容器服务Kubernetes版

首页 标签 容器服务Kubernetes版
|
4月前
|
K8s中Flannel网络插件安装提示forbidden无权限的解决方法
总的来说,解决“forbidden无权限”的问题,需要从权限和配置两个方面来考虑。只有当用户或者服务账户有足够的权限,且Flannel的配置文件设置正确,才能成功地安装Flannel。希望这个解答能够帮助你解决问题。
|
5月前
|
在K8s中,“deployment”的角色和功能
总的来说,Kubernetes中的Deployment就像一位尽职的舞台指挥,默默察看、控制我们的Pods,确保它们在变化的环境中始终保持最佳状态,从而让我们的应用程序可以稳定运行。
StrmVol存储卷:如何解锁K8s对象存储海量小文件访问性能新高度?
如何提升海量文件的数据读取速率,对于AI训练集管理、量化回测、时序日志分析等场景尤为重要。阿里云容器服务(ACK))支持StrmVol类型存储卷,基于底层虚拟块设备及内核态文件系统,显著降低海量小文件访问延迟。
使用Airflow在k8s集群上轻松搭建企业级工作流
Apache Airflow 是一个开源工作流管理平台,支持编写、调度与监控复杂任务流。其核心通过代码定义工作流(DAG),结合 Scheduler、Executor、Web Server 等组件实现灵活的任务管理和执行。Airflow 支持容器化部署,如通过 Helm Chart 手动部署或使用阿里云计算巢一键部署,简化运维复杂度。实际使用中,可通过 Git 仓库同步 DAG 文件至 Scheduler,支持任务依赖编排与日志跟踪。示例展示了简单的 Hello World 工作流从代码到运行的全流程,验证了其强大的图形化交互和业务扩展能力。
|
5月前
| |
来自: 云原生
StrmVol 存储卷:解锁 K8s 对象存储海量小文件访问性能新高度
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
|
5月前
|
Kubernetes、Docker和Containerd的关系解析
总的来说,Docker、Containerd和Kubernetes之间的关系可以用一个形象的比喻来描述:Docker就像是一辆装满货物的卡车,Containerd就像是卡车的引擎,而Kubernetes就像是调度中心,负责指挥卡车何时何地送货。
|
5月前
|
《从部署到运维:Kubernetes的容器管理奇招》
Kubernetes是容器编排领域的核心工具,助力企业实现容器自动化部署与管理。它通过控制平面和工作节点协同工作,提供高可用、可扩展的应用运行环境。Pod作为最小部署单元,结合ReplicaSet和Deployment,确保应用稳定运行与平滑更新。Service实现负载均衡,HPA支持动态扩缩容,蓝绿/金丝雀部署降低风险。Kubernetes贯穿容器生命周期,提升效率、可靠性,降低运维成本,为企业数字化转型提供强大支持。
|
5月前
| |
来自: 云原生
突破地域限制,实现算力无限供给 —阿里云ACK One注册集群开启多地域Serverless算力调度
本文介绍了阿里云ACK One注册集群多地域Serverless算力调度解决方案,解决传统数据中心在AI时代面临的算力不足问题。方案通过分钟级接入、100%兼容Kubernetes操作及云上Serverless弹性,实现跨地域弹性算力供给,支持高并发请求与模型快速迭代。文中详细描述了快速接入步骤、指定地域调度及动态调度方法,并提供了相关代码示例。该方案助力企业实现AI推理服务的规模化部署,提升商业落地效率。
K8S 部署 Deepseek 要 3 天?别逗了!Ollama+GPU Operator 1 小时搞定
最近一年我都在依赖大模型辅助工作,比如 DeepSeek、豆包、Qwen等等。线上大模型确实方便,敲几个字就能生成文案、写代码、做表格,极大提高了效率。但对于企业来说:公司内部数据敏感、使用外部大模型会有数据泄露的风险。
容器化爬虫部署:基于K8s的任务调度与自动扩缩容设计
随着业务复杂度提升,传统定时任务和手工扩缩容难以满足高并发与实时性需求。本文对比两种基于 Kubernetes 的爬虫调度与扩缩容方案:CronJob+HPA 和 KEDA。从调度灵活性、扩缩容粒度、实现难度等维度分析,并提供 YAML+Python 示例。方案 A(CronJob+HPA)适合固定定时任务,配置简单;方案 B(KEDA)支持事件驱动,适合高并发与异步触发场景。根据实际需求可混合使用,优化资源利用与效率。
免费试用