深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
为什么要用TorchEasyRec processor?
TorchEasyRec处理器支持Intel和AMD的CPU服务器及GPU推理,兼容普通PyTorch模型。它具备TorchEasyRec的特征工程(FG)和模型推理功能,提供更快的推理性能,降低成本。通过Item Feature Cache特性,它能够缓存特征以减少网络传输,进一步提升特征工程与推理的速度。
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。
DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
DeepSeek是一个高效、灵活的深度学习框架,旨在简化模型的构建、训练和评估。其核心特点包括模块化设计、自动微分、多后端支持及易于扩展。本文通过手写数字识别的CNN模型实例,展示了DeepSeek的安装、数据准备、模型构建、编译、训练与评估过程,最终模型在测试集上达到了98%以上的准确率。