本地部署企业级自适应 RAG 应用的方法与实践
本文介绍了本地部署企业级自适应RAG(Adaptive Retrieval-Augmented Generation)应用的方法与实践。RAG结合信息检索与文本生成,广泛应用于问答、编程等领域。自适应RAG通过分类器评估查询复杂度,动态选择无检索、单步检索或多步检索策略,优化生成结果。其特点在于灵活性和适应性,能够根据输入情况调整检索和生成策略。核心技术包括检索策略的自适应、生成策略的自适应以及模型参数的自适应调整。通过实战,深入了解了RAG的工作原理和应用场景,并获得了宝贵经验。
CIKM 2024:两位本科生一作,首次提出持续学习+少样本知识图谱补全
在信息爆炸时代,知识图谱的构建和维护面临数据稀疏与动态变化等挑战。CIKM 2024会议上,两位本科生提出将**持续学习与少样本学习结合**的新方法,有效应对这些难题。该方法通过持续学习框架适应动态变化,并利用少样本学习提高数据稀疏场景下的补全效果,显著提升了知识图谱的完整性和准确性。实验结果表明,此方法在准确性、鲁棒性和泛化能力上均有显著优势,为知识图谱补全领域带来了新思路。
《词嵌入技术:开启文本理解的大门》
词嵌入技术是自然语言处理的重要工具,Word2Vec和GloVe是两种常见模型。Word2Vec基于神经网络,通过上下文预测学习词向量,有CBOW和Skip-gram两种训练方式;GloVe则通过全局统计分析构建词向量,利用矩阵分解捕捉词的共现关系。两者在训练方式、词向量表示及应用场景上各有优势,可根据需求选择或结合使用,推动NLP技术发展。
通义智文:文档应用赋能千行百业
通义智文是阿里巴巴推出的大规模文档处理技术体系,旨在提升生产力效率。最初作为阅读工具发布,现已发展为涵盖文档解析、理解、生成等多方面的技术平台。通义智文支持超长文档处理、多模态文本解析,并在法律、教育等领域提供专业服务。其创新算法如VGT版面分析和Layout-LM多模态模型,显著提升了文档处理精度。应用场景包括PPT创作、故事绘本生成及法律文书审查等,赋能千行百业。
RAG七十二式:2024年度RAG清单
作者遴选了2024年度典型的RAG系统和论文(含AI注解、来源、摘要信息),并于文末附上RAG综述和测试基准材料,希望阅读完本文可以帮助大家速通RAG。