大数据

首页 标签 大数据
# 大数据 #
关注
48809内容
|
1小时前
|
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
|
3小时前
|
【复现】【充换电站】考虑用户充电负荷-最优分时电价互动的光储充换电站优化模型研究(Matlab代码实现)
【复现】【充换电站】考虑用户充电负荷-最优分时电价互动的光储充换电站优化模型研究(Matlab代码实现)
|
7小时前
| |
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
基于springboot的大学生心理咨询管理系统
本研究针对大学生心理健康问题,构建基于Spring Boot、Vue等技术的心理咨询管理系统,实现心理数据电子化、智能化管理。系统支持在线预约、匿名咨询、心理测评与数据分析,兼具隐私保护与危机预警功能,提升服务可及性与干预精准度,助力高校心理健康工作科学化发展。
人工智能模型决策过程:机器与人类协作成效
决策智能(DI)融合AI与人类判断,提升商业决策质量。通过数据驱动的预测与建议,结合人机协作,实现更高效、精准的业务成果,推动企业迈向数据文化新阶段。(238字)
|
2天前
|
5个技巧写出专业Python代码:从新手到进阶的实用指南
本文分享5个提升Python代码质量的核心技巧,涵盖命名规范、函数设计、错误处理、代码组织和性能优化,通过实际案例对比展示专业编码实践,助你写出更清晰、可维护的代码。
【C位面对面】被低估的“通用算力”:为什么 AI 时代CPU 的需求“不降反增”?
AI时代下,大数据、高频交易、AI预处理、边缘计算等核心负载持续推高CPU算力需求。阿里云联合AMD,基于Zen5架构Turin处理器,推出三款场景化云实例:普惠型u2a、高主频g9a及192核g9ae,满足多样算力需求。通过CIPU+Chiplet技术实现性能跃迁,释放CPU真正潜力,助力企业把握通用计算的“第二增长曲线”。
免费试用