分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37592内容
|
1月前
|
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
分布式系统的演进过程
【10月更文挑战第24天】总的来说,分布式系统的演进是一个不断适应变化、解决问题和创新发展的过程。从早期的萌芽到如今的多元化发展,它见证了技术的进步和应用场景的拓展。在未来,分布式系统将继续在各个领域发挥重要作用,推动着数字化世界的不断前行。
|
1月前
|
Kettle的Java开发环境需要什么jar包?
【10月更文挑战第24天】Kettle的Java开发环境需要什么jar包?
|
1月前
|
"DataWorks高级技巧揭秘:手把手教你如何在PyODPS节点中将模型一键写入OSS,实现数据处理的完美闭环!"
【10月更文挑战第23天】DataWorks是企业级的云数据开发管理平台,支持强大的数据处理和分析功能。通过PyODPS节点,用户可以编写Python代码执行ODPS任务。本文介绍了如何在DataWorks中训练模型并将其保存到OSS的详细步骤和示例代码,包括初始化ODPS和OSS服务、读取数据、训练模型、保存模型到OSS等关键步骤。
|
1月前
|
大模型的内部结构复杂,导致其决策过程难以解释,这对于某些应用场景来说是不可接受的。
【10月更文挑战第23天】随着人工智能技术的发展,越来越多的企业开始探索大模型的私有化部署。本文详细介绍了在企业内部实现大模型私有化部署的方法,包括硬件配置、数据隐私保护、模型可解释性提升以及模型更新和维护等方面的解决方案,帮助企业克服相关挑战,提高数据处理的安全性和效率。
|
1月前
|
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
|
1月前
|
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
|
1月前
|
形式化定理证明新突破:SubgoalXL框架让大模型在Isabelle中性能暴涨
【10月更文挑战第22天】该方法通过结合子目标导向的证明策略和专家学习,显著提升了大型语言模型(LLMs)在Isabelle环境中的形式化定理证明能力。SubgoalXL优化了数据效率,从有限的证明数据中提取丰富信息,并充分利用Isabelle的子目标管理功能,显著提高了模型的多步骤推理能力。实验结果显示,SubgoalXL在miniF2F数据集上取得了56.1%的准确率,比之前最佳方法提高了4.9%。这一成果为形式化定理证明领域带来了新的机遇和挑战。
免费试用