分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37752内容
在数据浪潮中前行:我与ODPS的实践、思考与展望
在数据驱动决策的时代,企业如何高效处理海量数据成为数字化转型关键。本文结合作者实践,深入解析阿里云自研大数据平台 ODPS 的技术优势与应用场景,涵盖 MaxCompute、DataWorks、Hologres 等核心产品,分享从数据治理到实时分析的落地经验,并展望其在 AI 与向量数据时代的发展前景。
破界·融合·进化:解码DataWorks与Hologres的湖仓一体实践
基于阿里云DataWorks与实时数仓Hologres,提供统一的大数据开发治理平台与全链路实时分析能力。DataWorks支持多行业数据集成与管理,Hologres实现海量数据的实时写入与高性能查询分析,二者深度融合,助力企业构建高效、实时的数据驱动决策体系,加速数字化升级。
Hadoop生态圈深度解读:从数据到可视化的全景视图
数据处理后可通过多种方式输出,计算后的数据输出可通过传统数据库或文件形式,并通过Tomcat服务器可视化展示结果。ZooKeeper为分布式系统提供可靠的协调服务。最后,计算分析结果将通过传统Tomcat服务器进行可视化展示。同时,ZooKeeper作为Google Chubby的开源实现,为大型分布式系统提供可靠协调服务,封装了复杂且易出错的关键服务,为用户提供简单易用、性能高效且功能稳定的系统。 至此,我们对整个大数据Hadoop生态体系的层次划分、技术支持和运行流程有了初步了解。接下来,我们将着手搭建Hadoop生态体系集群,深入解析各个框架的实现过程与执行原理,以完成项目数据分析。
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
3月前
| |
来自: 弹性计算
阿里云服务器ECS实例选型参考:场景适配、应用推荐
选择阿里云服务器ECS实例之前,需要结合性能、价格、工作负载等因素,做出性价比与稳定性最优的决策。对于很多新手用户来说,在初次购买阿里云服务器的时候,面对众多实例规格往往不知道如何选择,因为云服务器实例规格不同,价格也不一样,性能表现更是千差万别。因此,在购买阿里云服务器ECS实例之前,需要结合性能、价格、工作负载等因素,做出性价比与稳定性最优的决策。本文将通过一些常见的选型场景推荐,为大家详细介绍阿里云服务器实例选型的最佳实践,便于大家在选择云服务器实例规格时做个参考。
别再云里雾里了!一文带你整明白Hadoop生态到底是啥玩意儿
别再云里雾里了!一文带你整明白Hadoop生态到底是啥玩意儿
|
3月前
| |
来自: 弹性计算
高内存场景必读!阿里云r7/r9i/r8y/r8i实例架构、性能、价格多维度对比
阿里云针对高性能需求场景,一般会在活动中推出内存型r7、内存型r9i、内存型r8y和内存型r8i这几款内存型实例规格的云服务器。相比于活动内的经济型e和通用算力型u1等实例规格,这些内存型实例在性能上更为强劲,尤其适合对内存和计算能力有较高要求的应用场景。这些实例规格的云服务器在处理器与内存的配比上大多为1:8,但它们在处理器架构、存储性能、网络能力以及安全特性等方面各有千秋,因此适用场景也各不相同。本文将为大家详细介绍内存型r7、r9i、r8y、r8i实例的性能、适用场景的区别以及选择参考。
特征存储避坑指南:对比 Feast/Hopsworks 在金融风控场景的落地实践
金融风控场景对特征存储系统有严苛要求,包括低延迟、强一致性、多源数据处理及合规性。本文对比Feast与Hopsworks两大平台的实战经验,解析其在特征服务优化、版本控制、性能调优等方面的优势与陷阱,并提出混合架构方案兼顾实时性与计算效率。通过实践验证,可显著提升系统性能并降低成本。
用 Spark 优化亿级用户画像计算:Delta Lake 增量更新策略详解
在亿级用户画像计算中,传统全量更新面临数据量大、更新频繁、延迟敏感等挑战。本文详解如何结合 Spark 与 Delta Lake 实现高效增量更新,通过仅处理变化数据,显著降低资源消耗并提升实时性,助力构建高性能用户画像系统。
阿里云PAI AutoML实战:20分钟构建高精度电商销量预测模型
本文介绍了如何利用阿里云 PAI AutoML 平台,在20分钟内构建高精度的电商销量预测模型。内容涵盖项目背景、数据准备与预处理、模型训练与优化、部署应用及常见问题解决方案,助力企业实现数据驱动的精细化运营,提升市场竞争力。
免费试用