《微服务必解之惑:分布式事务方案大揭秘》
微服务架构因灵活性与可扩展性成为企业首选,但分布式事务问题随之凸显。本文探讨了多种解决方案:两阶段提交(2PC)和三阶段提交(3PC)保证强一致性,但存在性能瓶颈;基于消息队列的最终一致性方案通过异步通信提升性能,适合对实时性要求不高的场景;Saga模式和TCC模式分别通过补偿事务和三阶段控制实现灵活处理。选择方案需综合考虑业务需求、系统架构及开发成本,以找到最优解。掌握这些方法,可有效应对微服务中的分布式事务挑战,构建高效稳定的系统。
【云故事探索】NO.14:乐言科技——云原生加速电商行业赋能,云消息队列助力降本 37%
上海乐言科技股份有限公司专注于AI技术,提供电商、金融等领域的整体解决方案。其核心产品“乐语助人”智能客服机器人日均服务超千万人次,助力六万余家电商客户数智化转型。为解决自建消息队列痛点,乐言科技采用阿里云消息队列RocketMQ版Serverless系列,实现业务稳定、开发成本降低、运维效率提升及资源弹性降本37%。通过云原生架构,乐言科技推动AI与电商深度融合,助力行业创新突破。
【云故事探索】NO.14:乐言科技——云原生加速电商行业赋能,云消息队列助力降本 37%
上海乐言科技股份有限公司专注于AI技术,提供电商、金融等领域的整体解决方案。其核心产品“乐语助人”智能客服机器人日均服务超千万人次,助力六万余家电商客户数智化转型。为解决自建消息队列痛点,乐言科技采用阿里云消息队列RocketMQ版Serverless系列,实现业务稳定、开发成本降低、运维效率提升及资源弹性降本37%。通过云原生架构,乐言科技推动AI与电商深度融合,助力行业创新突破。
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
数据中台架构与技术体系
本文介绍了数据中台的整体架构设计,涵盖数据采集、存储、计算、服务及治理等多个层面。在数据采集层,通过实时与离线方式整合多类型数据源;存储层采用分层策略,包括原始层、清洗层、服务层和归档层,满足不同访问频率需求;计算层提供批处理、流处理、交互式分析和AI计算能力,支持多样化业务场景。数据服务层封装数据为标准化API,实现灵活调用,同时强调数据治理与安全,确保元数据管理、质量监控、权限控制及加密措施到位,助力企业构建高效、合规的数据管理体系。
Spring Boot整合kafka
本文简要记录了Spring Boot与Kafka的整合过程。首先通过Docker搭建Kafka环境,包括Zookeeper和Kafka服务的配置文件。接着引入Spring Kafka依赖,并在`application.properties`中配置生产者和消费者参数。随后创建Kafka配置类,定义Topic及重试机制。最后实现生产者发送消息和消费者监听消息的功能,支持手动ACK确认。此方案适用于快速构建基于Spring Boot的Kafka消息系统。
100行代码讲透MCP原理
本文通过100行代码看到MCP的核心原理并不复杂,但它的设计巧妙深入理解使我们能够超越简单的SDK使用,创建更强大、更灵活的AI应用集成方案。