淘宝天猫商品详情API全攻略
淘宝天猫商品详情API是淘宝开放平台的核心接口,支持通过商品ID获取标题、价格、库存、SKU等全维度信息,采用RESTful设计,实时高效,适用于比价系统、库存监控、智能选品等电商应用开发与数据分析场景。
Vue 3 + TypeScript 现代前端开发最佳实践(2025版指南)
每日激励:“如果没有天赋,那就一直重复”。我是蒋星熠Jaxonic,一名执着于代码宇宙的星际旅人。用Vue 3与TypeScript构建高效、可维护的前端系统,分享Composition API、状态管理、性能优化等实战经验,助力技术进阶。
京东商品 SKU 信息接口(jingdong.ware.sku.get)技术干货:数据拉取、规格解析与字段治理(附踩坑总结 + 可运行代码)
本文详解京东商品SKU接口对接技术,涵盖核心参数、权限申请、签名生成、规格解析及常见坑点解决方案,结合可运行代码与实战经验,助力开发者高效集成SKU数据,实现库存、价格等关键信息精准获取。
大语言模型的核心算法——简要解析
大语言模型的核心算法基于Transformer架构,以自注意力机制为核心,通过Q、K、V矩阵动态捕捉序列内部关系。多头注意力增强模型表达能力,位置编码(如RoPE)解决顺序信息问题。Flash Attention优化计算效率,GQA平衡性能与资源消耗。训练上,DPO替代RLHF提升效率,MoE架构实现参数扩展,Constitutional AI实现自监督对齐。整体技术推动模型在长序列、低资源下的性能突破。
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
Hologres+函数计算+Qwen3,对接MCP构建企业级数据分析 Agent
本文介绍了通过阿里云Hologres、函数计算FC和通义千问Qwen3构建企业级数据分析Agent的解决方案。大模型在数据分析中潜力巨大,但面临实时数据接入与跨系统整合等挑战。MCP(模型上下文协议)提供标准化接口,实现AI模型与外部资源解耦。方案利用SSE模式连接,具备高实时性、良好解耦性和轻量级特性。Hologres作为高性能实时数仓,支持多源数据毫秒级接入与分析;函数计算FC以Serverless模式部署,弹性扩缩降低成本;Qwen3则具备强大的推理与多语言能力。用户可通过ModelScope的MCP Playground快速体验,结合TPC-H样例数据完成复杂查询任务。
合合信息TextIn大模型加速器2.0发布:智能图表解析测评
随着人工智能技术的飞速发展,大规模语言模型(LLM)在自然语言处理、图像识别、语音合成等领域的应用日益广泛。然而,大模型的计算复杂度和资源消耗问题也日益凸显。为了解决这一问题,合合信息TextIn推出了大模型加速器2.0,旨在提升大模型的训练和推理效率,降低计算成本,完成智能问答与对话式交互,深度概括与定位等。本文将对合合信息TextIn大模型加速器2.0进行详细测评,重点关注其在智能图表解析任务中的表现。
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
vscode推送项目到github仓库故障解决1
本文介绍了如何优雅解决本地仓库与远程仓库历史记录不一致的问题,并提供避免未来问题的最佳实践。核心在于理解问题根源(如历史记录差异和常见原因),采用推荐的解决方案(先本地初始化再关联远程仓库),并遵循一致的工作流程、团队协作规范及熟悉 Git 命令。通过强制推送或合并无关历史记录等方式处理现有冲突,同时养成良好习惯以预防类似问题。
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
大型语言模型(LLM)的发展迅速,从简单对话系统进化到能执行复杂任务的先进模型。然而,这些模型的规模和计算需求呈指数级增长,给学术界和工业界带来了挑战。为解决这一问题,知识蒸馏技术应运而生,旨在将大型模型的知识转移给更小、更易管理的学生模型。Google Research 提出的“Distilling Step-by-Step”方法不仅减小了模型规模,还通过提取推理过程使学生模型在某些任务上超越教师模型。该方法通过多任务学习框架,训练学生模型同时预测标签和生成推理过程,从而实现更高效、更智能的小型化模型。这为资源有限的研究者和开发者提供了新的解决方案,推动了AI技术的普及与应用。
Transformer 学习笔记 | Seq2Seq,Encoder-Decoder,分词器tokenizer,attention,词嵌入
本文记录了学习Transformer过程中的笔记,介绍了Seq2Seq模型及其编码器-解码器结构。Seq2Seq模型通过将输入序列转化为上下文向量,再由解码器生成输出序列,适用于机器翻译、对话系统等任务。文章详细探讨了Seq2Seq的优势与局限,如信息压缩导致的细节丢失和短期记忆限制,并引入注意力机制来解决长序列处理问题。此外,还介绍了分词器(tokenizer)的工作原理及不同类型分词器的特点,以及词嵌入和Transformer架构的基础知识。文中包含大量图表和实例,帮助理解复杂的概念。参考资料来自多个权威来源,确保内容的准确性和全面性。
部署使用 CHAT-NEXT-WEB 基于 Deepseek
本文介绍如何在阿里云轻量服务器上部署基于 `Deepseek` 的 `CHAT-NEXT-WEB` 项目。首先,准备一台 Linux 服务器并安装 Docker,确保防火墙允许特定端口访问。接着,通过阿里云容器镜像服务解决国内网络限制问题,将镜像推送到私有仓库并拉取到本地。配置并启动 `chat-next` 项目,使用 Deepseek API 进行优化。最后,安装 Nginx 和 Certbot 配置 HTTPS 访问,确保安全性和自动续签。整个过程需严格遵循官方文档,以避免因网络问题导致的安装失败。
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
本地部署企业级自适应 RAG 应用的方法与实践
本文介绍了本地部署企业级自适应RAG(Adaptive Retrieval-Augmented Generation)应用的方法与实践。RAG结合信息检索与文本生成,广泛应用于问答、编程等领域。自适应RAG通过分类器评估查询复杂度,动态选择无检索、单步检索或多步检索策略,优化生成结果。其特点在于灵活性和适应性,能够根据输入情况调整检索和生成策略。核心技术包括检索策略的自适应、生成策略的自适应以及模型参数的自适应调整。通过实战,深入了解了RAG的工作原理和应用场景,并获得了宝贵经验。
产品经理-B 端与C端
B端与C端是IT互联网产品经理的类型划分,分别面向企业和个人消费者。C端产品如微信、淘宝,注重用户体验和快速迭代;B端产品如CRM系统、ERP软件,强调功能复杂性和定制化服务。此外,还有G端产品,主要服务于政府机构,注重数据安全和合规性。产品经理起源于20世纪20年代末的美国宝洁公司,随着互联网的发展,该角色在IT领域变得愈加重要。
BERT的继任者ModernBERT:融合长序列处理、代码理解与高效计算的新一代双向编码器
ModernBERT 是一个全新的模型系列,在**速度**和**准确性**两个维度上全面超越了 BERT 及其后继模型。
代理IP故障排查技巧汇总及实战经验分享
在信息化时代,互联网不可或缺。使用HTTP动态代理IP时,快速排查故障至关重要。主要步骤包括:1. 检查代理IP有效性(Ping测试、HTTP请求测试);2. 监控连接速度(延迟和带宽测试);3. 分析错误信息(HTTP状态码、日志);4. 检查代理设置(配置文件、协议支持);5. 使用调试工具(Wireshark、浏览器开发者工具);6. 咨询服务提供商;7. 检查网络环境(防火墙、ISP限制);8. 逐步排查并记录变化。这些技巧能有效找出并解决问题。
陪玩系统安全问题 陪玩系统用户体验 陪玩系统功能 陪玩搜索功能优化 陪玩系统开发教程
陪玩系统的安全问题至关重要,涉及用户数据保护、支付安全和平台稳定性。关键措施包括多因子认证、支付接口加密、防止恶意脚本注入、DDoS攻击防护及数据加密。同时,优化用户体验也非常重要,如简化操作流程、提供互动功能和个性化服务。核心功能涵盖用户注册、陪玩师资料展示、智能匹配、实时通讯、支付结算等。开发时需综合考虑需求分析、技术选型、界面设计和功能实现,并进行充分测试与优化,确保系统稳定性和安全性。
体育动画直播,观赛的新潮流
体育动画直播利用动画技术和实时数据,生动呈现比赛进程,增强观众参与感。篮球、足球及电竞赛事中,通过动画展示球员轨迹和比赛数据,使观众更直观了解比赛进展。熊猫比分推出的最新版体育动画直播产品,界面可高度定制,支持动画UI和品牌LOGO自定义,云传输技术确保比赛进度领先视频直播,极大提升用户体验。
基于深度学习的健康饮食推荐系统
本研究聚焦基于深度学习的健康饮食推荐系统,针对慢性病高发与饮食不健康问题,结合Spring Boot、Vue.js、MySQL等技术,构建个性化、智能化的饮食管理平台,提升用户健康管理效率。
GEO优化白皮书:生成式搜索时代的企业内容信号工程
《GEO优化白皮书》系统解析生成式搜索时代的内容竞争新规则,提出从传统SEO向GEO(生成式引擎优化)的战略升级。作者尹邦奇指出,AI搜索已从关键词排名转向语义理解与信任信号竞争,企业需构建语义、结构与权威三大信号工程,通过语义切片、结构化标注与多平台信号矩阵,在百度、Kimi、DeepSeek等多模型生态中实现高权重调用。书中结合健康险、白酒、教育等行业实战案例,提炼出“意图解析—答案工程—信号嵌入—多引擎投喂—热度追踪”的五步落地模型,并展望GEO向智能化、多模态与全球协同演进的趋势。本书为中国企业在全球AI内容生态中赢得主动推荐与可持续曝光提供系统方法论。
阿里云大数据AI产品月刊-2025年10月
大数据& AI 产品技术月刊【2025年 10 月】,涵盖 10 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
淘宝API图片搜索 | 天猫商品图片识别 | 一键上传找相似商品
淘宝图片搜索API(拍立淘)基于图像识别与深度学习技术,支持通过图片查找相似商品,适用于比价、找同款等场景。提供精准匹配、多参数调节,助力开发者打造智能购物应用,提升搜索效率与用户体验。
向量存储vs知识图谱:LLM记忆系统技术选型
本文探讨LLM长期记忆系统的构建难点与解决方案,对比向量检索与知识图谱架构优劣,分析Zep、Mem0、Letta等开源框架,并提供成本优化策略,助力开发者实现高效、可扩展的AI记忆系统。
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
蒋星熠Jaxonic,深度学习探索者。本文深度对比TensorFlow与PyTorch架构、性能、生态及应用场景,剖析技术选型关键,助力开发者在二进制星河中驾驭AI未来。
Step-Audio2 声音克隆 详细介绍
Step-Audio2是StepFun于2024年推出的中文语音克隆大模型,支持“一句话克隆+情感可控+实时流式”一体化生成,参数总量300M,首包延迟低至120ms,MOS达4.4+,采用Apache-2.0协议开源,适配商业应用,是当前中文TTS领域开源落地门槛最低的方案之一。
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
1688查询榜单列表API详解
1688榜单API提供实时热销、新品等商品榜单数据,支持20+品类及40+字段筛选,适用于选品与市场分析。每小时更新,响应迅速。提供Python调用示例,开发者可快速集成。
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Coder模型
Qwen3-Coder 是通义千问最新开源的 AI 编程大模型正式开源,拥有卓越的代码和 Agent 能力,在多领域取得了开源模型的 SOTA 效果。PAI 已支持最强版本 Qwen3-Coder-480B-A35B-Instruct 的云上一键部署。
利用中间件实现任务去重与分发精细化:股吧舆情数据采集与分析实战
本项目针对东方财富股吧设计精细化采集方案,解决重复采集、调度混乱与反爬等问题,构建舆情分析数据模型。通过采集帖子内容、用户行为与情绪信号,实现情绪趋势可视化、热点识别与个股预警,助力把握市场风向。
java 入门学习视频_2025 最新 java 入门零基础学习视频教程
《Java 21 入门实操指南(2025年版)》提供了Java最新特性的开发指导。首先介绍了JDK 21和IntelliJ IDEA 2025.1的环境配置,包括环境变量设置和预览功能启用。重点讲解了Java 21三大核心特性:虚拟线程简化高并发编程,Record模式优化数据解构,字符串模板提升字符串拼接可读性。最后通过图书管理系统案例,展示如何运用Record定义实体类、使用Stream API进行数据操作,以及结合字符串模板实现控制台交互。该指南完整呈现了从环境搭建到实际项目开发的Java 21全流程实
AI 搜索开放平台重磅发布:Qwen3 模型上线啦
阿里云AI搜索开放平台重磅发布最新Qwen3模型,为企业和开发者提供全栈智能搜索解决方案。Qwen3作为最新一代大模型,在推理、多语言支持和Agent能力上表现卓越。用户可通过三步快速体验Qwen3服务,助力业务在AI时代抢占先机。
人工智能平台 PAI DistilQwen2.5-DS3-0324发布:知识蒸馏+快思考=更高效解决推理难题
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。DistilQwen2.5-DS3-0324 系列模型是基于 DeepSeek-V3-0324 通过知识蒸馏技术并引入快思考策略构建,显著提升推理速度,使得在资源受限的设备和边缘计算场景中,模型能够高效执行复杂任务。实验显示,DistilQwen2.5-DS3-0324 系列中的模型在多个基准测试中表现突出,其32B模型效果接近参数量接近其10倍的闭源大模型。
本地部署DeepSeek教程:一键远程访问,还能解决Ollama安全隐患
本教程详细介绍如何使用Ollama+Open WebUI本地部署DeepSeek模型,并借助贝锐花生壳内网穿透实现安全远程访问。首先,安装Ollama并下载DeepSeek模型,根据显存选择合适参数(如4G选1.5B)。接着,通过Docker部署Open WebUI以获得图形化交互界面。最后,利用贝锐花生壳简单三步完成远程访问设置,支持HTTPS加密传输,保障数据安全。整个过程无需云服务器,轻松打造专属AI助手。
VideoMind:Chain-of-LoRA突破时间盲区让AI真正看懂长视频
VideoMind是一种新型视频语言代理,专为解决长视频时间定位理解挑战设计。它通过“Chain-of-LoRA”技术结合四个专业角色(Planner、Grounder、Verifier、Answerer)实现高效推理。Planner分析查询并制定计划;Grounder精确定位视频时刻;Verifier验证候选时刻准确性;Answerer生成最终答案。此架构在14个公共基准上表现出色,尤其在长视频定位任务中超越了现有模型,同时保持高内存效率。VideoMind推动了多模态AI的发展,提供了解决复杂视频理解问题的新方法。
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
强化学习:Markov决策过程(MDP)——手把手教你入门强化学习(二)
本文是“手把手教你入门强化学习”系列的第二篇,重点讲解了强化学习的核心数学模型——Markov决策过程(MDP)。文章从马尔可夫性质出发,逐步引入马尔可夫过程、马尔可夫奖励过程,最终深入到马尔可夫决策过程,详细解析了状态转移、奖励机制、价值函数及贝尔曼方程等关键概念。同时,文中还介绍了策略函数、最优价值函数等内容,并指出求解强化学习问题的关键在于寻找最优策略。通过理论推导与实践结合的方式,帮助读者更好地理解强化学习基础原理。
小白避坑指南:国内用Colossal-AI微调DeepSeek 1.5B的完整踩坑记录(附镜像加速方案)
本文详细记录了使用Colossal-Ai对DeepSeek-Qwen模型进行微调的过程,包括模型下载、环境部署、数据集处理及代码实现等环节。重点介绍了LoRA低秩适配方法和Colossal-Ai分布式训练框架的使用技巧,解决了模型封装后函数调用冲突、梯度检查点配置等问题。通过命令行参数灵活调整训练配置,最终在两块A100 GPU上完成训练,单卡显存占用约11GB,利用率达85%。文章总结了常见问题及解决方法,为后续研究提供参考。
Hologres × PAI × DeepSeek 搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于DeepSeek大模型的RAG(检索增强生成)服务,并关联Hologres引擎实例。Hologres与阿里云自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时的向量计算能力。通过PAI-EAS,用户可以一键部署集成了大语言模型和RAG技术的对话系统服务,显著缩短部署时间,并提高问答质量。部署步骤包括准备Hologres向量检索库、部署基于DeepSeek的RAG服务、通过WebUI进行模型推理验证,以及通过API调用进行模型推理验证。Hologres还提供了特色功能支持,如高性能向量计算等。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。