机器学习开发者不可错过的ModelScope开源模型社区

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 对于刚刚接触机器学习的开发者来说,ModelScope开源模型社区是你不容错过的选择!快速入门及环境安装,可以在线体验也可以本地开发。

@[toc]

ModelScope开源模型社区

对于刚刚接触机器学习的开发者来说,ModelScope开源模型社区是你不容错过的选择!
ModelScope开源模型社区
在这里插入图片描述

快速入门及环境安装

在这里你不仅可以在线体验开源模型,下载数据集,还可以根据说明文档配置环境,手把手的教你如何本地开发环境安装。

安装python环境。
支持python3,不支持python2,建议3.7版本及以上。推荐您使用Anaconda进行安装。
安装深度学习框架。
ModelScopeLibrary目前支持Tensorflow,Pytorch两大深度学习框架进行模型训练、推理。您可根据模型所需的框架选择适合的框架进行安装。
安装ModelScope Library。
提供两种安装方式,您可选择适合的方式进行安装。
pip安装。ModelScope提供了根据不同领域的安装包,您可根据对应的模型选择所需的安装包。
使用源码安装。

还有更加详细的安装指南!
在这里插入图片描述

主要有两大功能,模型库和数据集。

模型库

模型分为两类,可在线体验和可训练。
在这里插入图片描述

下载数据集

可以查找你想要的数据集。
例如我要分类豌豆,就要下载一些豌豆图片作为训练集

在这里插入图片描述
这里有数据集的介绍,数据预览和下载数据集文件。

如果有疑问可以到文档中心查找。
在这里插入图片描述

达摩卡通化模型

输入一张人物图像,实现端到端全图卡通化转换,生成二次元虚拟形象,返回卡通化后的结果图像。
类似网上很火的人像动漫

模型介绍

在这里插入图片描述
详细的介绍了该模型的功能以及原理,并且指出使用的方式和范围。
还有模型的训练集,推理过程,数据评估等等。

这里我们体验一下在线!
在这里插入图片描述
速度还是很快的,卡通化的程度也很高!
人像这方面没什么问题,下面我们上传风景照片看一下
在这里插入图片描述
风景照片也是很不错的,所以我觉得不仅仅可以用到人像上面,对于一些风景来说将其卡通化,也别有一种意境!

下载模型文件

在这里插入图片描述

快速入手

在这里插入图片描述

由于配置本地环境有些麻烦,为了更快的体验产品,这里选择了使用ModelScope提供的远程环境,即使用Notebook进行开发,更加方便和快捷。
在这里插入图片描述
选择免费版本即可。

在这里插入图片描述
上传要抠图的图片

在这里插入图片描述
粘贴示例代码

import cv2
from PIL import Image
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

img_cartoon = pipeline(Tasks.image_portrait_stylization, 'damo/cv_unet_person-image-cartoon_compound-models')
result = img_cartoon('/mnt/workspace/image_cartoon.png')
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
im = Image.open('result.png')
im.show()

在这里插入图片描述

运行
在这里插入图片描述
输出并展示卡通化的图片!

达摩人像抠图

人像抠图对输入含有人像的图像进行处理,无需任何额外输入,实现端到端人像抠图,输出四通道人像抠图结果。
在这里插入图片描述

在线抠图

在这里插入图片描述
这个效果惊艳到我了😲,我也学过一点PS但是抠成这样对我是很难的,连头发丝都能抠出来,拯救了不会抠图的我!
在这里插入图片描述

效果非常好呀!

本地抠图

在这里插入图片描述
报错我调试了一会也没成功。

总结:

虽然有的模型有些不足,但总体来说模型的训练度很高,速度也很快,对于机器学习有很大的帮助,可以在上面找一些项目自己动手做做,很轻松就能实现一个项目。由于我比较喜欢计算机视觉方面,所以我介绍几个计算机视觉方面的,这里还有很多模型如果有你喜欢的大家可以去尝试尝试!

计算机视觉

单标签图像分类 通用图像分割 文字检测 人像美肤 风格迁移 图像翻译

自然语言处理

分词 情感分类 句子相似度 关系抽取 零样本分类 翻译

语音

语音识别 语音合成 语音唤醒 音频分类 语音降噪 回声消除
多模态
图像描述 视觉定位 文本生成图片 多模态表征 视觉问答 图文检索

ModelScope开源模型社区

目录
相关文章
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
642 109
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
297 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
6月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
4月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
357 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
4月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
4月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
5月前
|
存储 人工智能 运维
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
221 6

热门文章

最新文章

相关产品

  • 人工智能平台 PAI