【最佳实践】实时计算Flink在在线教育行业的实时数仓建设实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在线教育是运用互联网、人工智能等现代信息技术进行教与学互动的新型教育方式,是教育服务的重要组成部分。

行业背景

  • 行业现状: 

    • 在线教育是运用互联网、人工智能等现代信息技术进行教与学互动的新型教育方式,是教育服务的重要组成部分。发展在线教育,有利于构建网络化、数字化、个性化、终身化的教育体系,有利于建设“人人皆学、处处能学、时时可学”的学习型社会。
  • 大数据在其行业中的作用:

    • 对未来客户的画像更加精准,营销推广时可以对接更好的服务并提升成交转化率(提升ROI不一定,这涉及到外部竞争);
    • 更全面的评估老师、学生、机构、行业等在线教育行业的各个参与者;
    • 大数据帮助在线教育行业更快发展

业务场景

某公司开发了个在线教育类APP,培训机构可以在APP中会发布一些直播课程,离线课程,习题,学习文章等内容。用户可在线学习新知识,离线巩固已学知识,并对学过的内容进行课后练习/测试。
业务的构建涉及到几部分:

  1. APP:应用程序,用户访问入口
  2. 后台系统:

    1. 教学老师:通过分析学生课堂参与情况,提供不同的授课方案,因材施教。
    2. 运维人员:通过运维监控指标,实时监控在线教育直播网络质量。
    3. 运营人员:根据学生注册、学习质量、平台成单量等统计信息针对性开展平台运营工作:

      1. 学生办理注册、增删课程等操作;
      2. 学生学习质量审核;
      3. 平台指标查看,如平台日成单量统计。

技术架构

image.png
架构解析:
数据采集:该场景中,数仓的数据来源有两部分:app的埋点至消息队列 Kafka 以及 hbase 等业务数据库的增量日志。值得注意的一点是,实时数仓往往和离线数仓配合使用,共享一套管控系统,如权限/元数据管理/调度等系统。
实时数仓架构:该场景中,整个实时数仓的ETL和BI部分的构建,全部通过 Flink + Kafka 完成,原始日志app_log_origin是从客户端直接收集上来的。然后数据处理,加维等操作后,最终输入到业务系统。

业务指标

  • 实时数据中间层

    • 学生操作日志 ETL 清洗(分析学生操作在线信令日志)

      • 获取学生移动图片操作
      • 获取学生 hover 图片操作
      • 获取学生画线操作
      • 音频播放
      • 音频暂停
      • 图文匹配错误
      • 图文匹配正确
    • 学生注册考试等级日志 ETL 清洗
  • 学生行为分析

    • 学生在线(直播)课程课堂表现统计
    • 学生离线(录播)课程学习时长统计
  • 运维/网络监控

    • 直播课程(音频)网络监控
    • 直播课程(视频)网络监控
  • 运营分析

    • 每小时不同 level 的学生注册人数统计
    • 每日课程顾问追踪统计

说明:该案例中仅包含以上场景及指标,在实际的应用场景下还包括日uv/pv,topN热门授课教师,教师授课质量、数量审核等其他指标。


业务代码

场景一:对原始日志进行实时数据清洗

学生操作日志 ETL 清洗(分析学生操作在线信令日志)

学生在直播课程中,会做一些随堂练习/测试,通过页面点击等操作形成原始埋点日志,为了很快的感知学生的学习表现(课堂表现),业务方针对不同的操作进行计分处理。为了下游有效的对数据进行处理,针对学生不同的操作,将原始数据(多层 JSON 数据)进行清洗(单层 JSON 数据),写入 kafka 中。

  • 埋点数据样例
--输入
{
    "createTime":"",
    "data":{
        "userid":"",
        "roomid":"",
        "timestamp":"",
        "role":"",
        "msgid":"",
        "msg":{
            "msgtype":"",
            "msg_data":{
                "target_id":"",
                "target_type":"",
                "action":"",
                "sub_action":"",
                "page_index":""
            }
        }
    }
}
--输出
{
    "messageCreateTime":"",
    "timeStamp":"",
    "messageTimeStamp":"",
    "userId":"",
    "roomId":"",
    "role":"",
    "msgId":"",
    "msgType":"",
    "targetId":"",
    "targetType":"",
    "action":"",
    "subAction":"",
    "pageIndex":"",
    "event":""
}

输入表

create table timeline_analysis_student_stream (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
    -- 事件时间
    `createTime` as cast(JSON_VALUE(`message`, '$.createTime')as VARCHAR),
    -- 用户 ID
    `userid` as cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.userid') as BIGINT),
    -- 教室 ID
      `roomid` as cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.roomid') as BIGINT),
    -- 操作时间
      `time_stamp` as cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.timestamp') as BIGINT),
      -- 角色 
    `role` as cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.role') as TINYINT),
    -- 消息 ID
    `msgid` as cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msgid') as BIGINT),
    -- 消息类型
    `msg_msgType` as cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msg') as VARCHAR), '$.msgtype') as VARCHAR),
    -- 消息目标 ID
    `msg_msgData_targetId` as cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msg') as VARCHAR), '$.msg_data') as VARCHAR), '$.target_id') as VARCHAR),
    -- 消息目标类型
      `msg_msgData_targetType` as cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msg') as VARCHAR), '$.msg_data') as VARCHAR), '$.target_type') as VARCHAR),
    -- 学生操作
      `msg_msgData_action` as cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msg') as VARCHAR), '$.msg_data') as VARCHAR), '$.action') as VARCHAR),
    -- 学生次操作
      `msg_msgData_subAction` as cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msg') as VARCHAR), '$.msg_data') as VARCHAR), '$.sub_action') as VARCHAR),
    -- PPT 页码
      `msg_msgData_pageIndex` as cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (cast(JSON_VALUE (`message`, '$.data') as VARCHAR), '$.msg') as VARCHAR), '$.msg_data') as VARCHAR), '$.page_index') as BIGINT)
) with (
    type = 'kafka011',
    topic = 'timeline_client_topic',
    `group.id` = 'timeline_analysis_student_consumer',
       ...
);

输出表

create table signal_student_classroom_internation (
   messageKey VARBINARY,
   `message` VARBINARY,
   PRIMARY KEY (messageKey)
) with (
    type = 'kafka011',
    topic = 'timeline_analysis_student',
    ...
);

业务代码

  • 获取学生移动图片操作

    • 当学生学习词性(形容词/副词),课堂小练习让学生将屏幕中出现的单词图片进行分类,学生需要移动图片进入不同的分类桶中。
INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_MOVE_PICTURE"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetType = 'shape' AND
    msg_msgData_action = 'move';
  • 获取学生 hover 图片操作

    • 当学生学习单词时,需要学习单词读音,当学生鼠标悬停到图片时进行发音教学。
INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_HOVER_PICTURE"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetType = 'shape' AND
    msg_msgData_action = 'mouse' AND
    msg_msgData_subAction = 'over';
  • 获取学生画线操作

    • 学生通过画线来进行随堂图文匹配练习。
INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_LINE_DRAW"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetType = 'shape' AND
    msg_msgData_action = 'add';
  • 获取学生音频播放操作

    • 学生播放课件中的音频。

INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_AUDIO_PLAY"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetType = 'template' AND
    msg_msgData_action = 'audio' AND
    msg_msgData_subAction = 'start';
  • 获取学生音频暂停操作

    • 学生暂停课件中的音频。
INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_AUDIO_PAUSE"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetType = 'template' AND
    msg_msgData_action = 'audio' AND
    msg_msgData_subAction = 'pause';
  • 获取学生图文匹配错误操作

    • 连线操作后,返回给学生连线结果。会影响课堂表现分数。
INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_MATCH_WRONG"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetId = 'match' AND
    msg_msgData_targetType = 'template' AND
    msg_msgData_action = 'match' AND
    msg_msgData_subAction = 'drop:wrong';
  • 获取学生图文匹配正确操作

    • 连线操作后,返回给学生连线结果。会影响课堂表现分数。
INSERT INTO signal_student_classroom_internation
SELECT
 cast(messageKey as VARBINARY) as messageKey,
 cast(CONCAT('{ "messageCreateTime": "',createTime,'","timeStamp": ',NOW()*1000,',"messageTimeStamp": "',TO_TIMESTAMP(time_stamp),'","userId": ',userid,',"roomId": ',roomid,',"role": ',role,',"msgId": ',msgid,',"msgType": ',msg_msgType,',"targetId": "',msg_msgData_targetId,'","targetType": "',msg_msgData_targetType,'","action": "',msg_msgData_action,'","subAction": "',msg_msgData_subAction,'","pageIndex": ',msg_msgData_pageIndex,',"event": "STUDENT_MATCH_CORRECT"',' }') as VARBINARY) as message
FROM timeline_analysis_student_stream
WHERE
    msgid = '305' AND
    msg_msgType = '116' AND
    role = '2' AND
    msg_msgData_targetId = 'match' AND
    msg_msgData_targetType = 'template' AND
    msg_msgData_action = 'match' AND
    msg_msgData_subAction = 'drop:correct';

学生注册考试等级日志 ETL 清洗

学生在 WEB/APP 页面注册时需要考试测评等级,以便后期学习对应 Level 的课程,通过 Flink 做数据清洗,将埋点到 kafka 上日志,输出到 Hbase。

  • 埋点数据样例
{
    "id":"",
    "chinese_name":"",
    "english_name":"",
    "level":"",
    "pid":"",
    "create_time":"",
    "update_time":"",
    "dept_id":""
}

输入表

create table blink_stg_activity__channel_name_dictionary_da (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
      -- ID
    id as JSON_VALUE(`message`,'$.id'),
      -- 中文名称
    chinese_name as JSON_VALUE(`message`,'$.chinese_name'),
      -- 英文名称
    english_name as JSON_VALUE(`message`,'$.english_name'),
      -- 测试登记
    level as JSON_VALUE(`message`,'$.level'),
      -- 唯一标识 ID
    pid as JSON_VALUE(`message`,'$.pid'),
      -- 创建时间
    create_time as JSON_VALUE(`message`,'$.create_time'),
      -- 更新时间
    update_time as JSON_VALUE(`message`,'$.update_time'),
      -- 部门 ID
    dept_id as JSON_VALUE(`message`,'$.dept_id')
) with (
    type = 'kafka010',
    topic = 'blink_stg_activity__channel_name_dictionary_da',
    `group.id` = 'blink_stg_activity__channel_name_dictionary_da',
    ...
);

输出表

create table blink_stg_activity__channel_name_dictionary_da_sinkhbase (
    rowkey varchar,
    id varchar,
    chinese_name varchar,
    english_name varchar,
    level varchar,
    pid varchar,
    create_time varchar,
    update_time varchar,
    dept_id varchar,
    primary key (rowkey)
) with (
    type = 'cloudhbase',
    tableName = 'channel_name_dictionary',
    ...
);

业务代码

insert into
    blink_stg_activity__channel_name_dictionary_da_sinkhbase
SELECT
    MD5(id) as rowkey,
    id ,
    chinese_name ,
    english_name ,
    level ,
    pid ,
    create_time ,
    update_time ,
    dept_id 
from
    blink_stg_activity__channel_name_dictionary_da;

场景二:学生行为分析

学生在线(直播)课程课堂表现统计

场景一中针对学生操作日志进行了清洗,该场景消费其清洗之后的数据,针对不同的用户 ID、Web 服务端 ID、角色、操作事件进行分组,开 1min 窗口,通过 count(event)聚合进行计分,求得每分钟学生在线(直播)课程的课堂表现。

  • 该指标上游数据是在学生操作日志 ETL 清洗的基础上进行统计
{
    "userId":"",
    "roomId":"",
    "role":"",
    "event":"",
    "timeStamp":""
}

输入表

create table timeline_analysis_student_mashup_stream (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
      -- 用户 ID
    `userId` as cast(JSON_VALUE (`message`, '$.userId') as BIGINT),
       -- Web 服务器 ID
    `webserverId` as cast(JSON_VALUE (`message`, '$.roomId') as BIGINT),
      -- 角色
    `role` as cast(JSON_VALUE (`message`, '$.role') as TINYINT),
    -- 操作事件
    `event` as cast(JSON_VALUE (`message`, '$.event') as VARCHAR),
      -- 事件时间
    time_stamp as TO_TIMESTAMP(cast(JSON_VALUE (`message`, '$.timeStamp') as BIGINT)),
    WATERMARK wk FOR time_stamp AS WITHOFFSET (time_stamp, 0)--为rowtime定义watermark
) with (
    type = 'kafka011',
    topic = 'timeline_analysis_student',
    `group.id` = 'timeline-analysis-student-mashup-consumer',
    ...
);

输出表

create table timeline_signal_analysis_mysql (
    start_time TIMESTAMP,
    end_time TIMESTAMP,
    webserver_id BIGINT,
    user_id BIGINT,
    role TINYINT,
    event VARCHAR,
    event_count BIGINT,
    create_time TIMESTAMP
) with (
    type='RDS',
    tableName='timeline_signal_analysis',
    ...
);

业务代码

  • 学生课堂表现解析

    • 学生在课堂中举手回答问题等行为进行积分,以此衡量学生课堂表现。
insert into timeline_signal_analysis_mysql
select 
    TUMBLE_START(time_stamp,INTERVAL '1' MINUTE) as start_time,
    TUMBLE_END(time_stamp,INTERVAL '1' MINUTE) as end_time,
    webserverId as webserver_id,
    userId as user_id,
    role as role,
    event as event,
    COUNT(event) as event_count,
    CURRENT_TIMESTAMP as create_time
FROM timeline_analysis_student_mashup_stream
GROUP BY TUMBLE (time_stamp,INTERVAL '1' MINUTE),
    userId,
    webserverId,
    role,
    event;

学生离线(录播)课程学习时长统计

通过 subEvent = 'PPT_SUCCESS' 将完成课程的事件整理出来,通过自关联的方式,和源表进行 JOIN 打宽,计算 'PPT_SUCCESS' 的时间点与最初播放 PPT 的时间差值。

  • 埋点数据样例
{
    "classroom_id":"",
    "user_type":"",
    "user_id":"",
    "event_time":"",
    "sub_event":"",
    "extra":{
        "data_time":"",
        "msg":{
            "pptIndex":""
        }
    }
}

输入表

create table qos_log_kafka (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
      --(录播)教室 ID
    `classroomId` as cast(JSON_VALUE(`message`, '$.classroom_id')as VARCHAR),
      -- 用户类型
    `userType` as cast(JSON_VALUE(`message`, '$.user_type')as VARCHAR),
      -- 用户 ID
    `userId` as cast(JSON_VALUE(`message`, '$.user_id')as BIGINT),
      -- 事件时间
    `eventTime` as cast(JSON_VALUE(`message`, '$.event_time')as BIGINT),
      -- 次操作
      `subEvent` as cast(JSON_VALUE(`message`, '$.sub_event')as VARCHAR),
      -- 数据时间
      `extraDataTime` as cast(cast(JSON_VALUE(cast(JSON_VALUE(`message`, '$.extra')as VARCHAR), '$.data_time')as VARCHAR)as BIGINT),
    -- PPT 页码
    `extraMsgIndex` as cast(JSON_VALUE(cast(JSON_VALUE(cast(JSON_VALUE(`message`, '$.extra')as VARCHAR), '$.msg')as VARCHAR), '$.pptIndex')as BIGINT)
) with (
    type = 'kafka011',
    topic = 'qos_log',
      ...
);

输出表

create table user_enter_classroom_take_time_mysql (
    user_id BIGINT,
    classroom_id VARCHAR,
    user_type VARCHAR,
    spend_time BIGINT,
    event_time TIMESTAMP,
    create_time TIMESTAMP
) with (
    type='rds',
    tableName='user_enter_classroom_take_time',
    ...
);

业务代码

  • 学生进入教室时长

    • 离线录播课程,通过 PPT 的播放时间来计算学生进入教室的时长。
CREATE VIEW qos_log_kafka_view AS
SELECT 
    `userId`,
    `classroomId`,
    `userType`,
    `eventTime`,
     subEvent,
    `extraDataTime`
FROM qos_log_kafka
WHERE subEvent = 'PPT_SUCCESS';

insert into user_enter_classroom_take_time_mysql
SELECT
  a.userId,
  a.classroomId,
  a.userType,
  b.extraDataTime-a.extraDataTime,--毫秒值
  TO_TIMESTAMP(a.eventTime),
  CURRENT_TIMESTAMP
FROM qos_log_kafka a
JOIN qos_log_kafka_view b ON a.userId=b.userId AND a.classroomId=b.classroomId 
WHERE a.extraDataTime<b.extraDataTime;

场景三:运维/网络监控

通过学生直播课程中,视频/音频运维埋点信息计算,以userId, agoraChannelId,classroomId, userType, event,agoraAudioStateUid/agoraVideoStateUid进行分组,开 30s 的滚动窗口,求最近 30s 直播课的视频/音频质量(丢包/异常平均值、总次数),供下游运维同学监控,实时调整音频/视频质量,给用户最佳的学习体验。

  • 埋点数据样例
{
    "classroom_id":"",
    "user_type":"",
    "user_id":"",
    "agora_channel_id":"",
    "event":"",
    "agora_videoState":{
        "fr":"",
        "uid":""
    },
    "agora_audioState":{
        "lost":"",
        "uid":""
    },
    "messageCreateTime":""
}

输入表

create table qos_agora_record_kafka (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
      -- 直播教室 ID
    `classroomId` as cast(JSON_VALUE(`message`, '$.classroom_id')as VARCHAR),
      -- 用户类型
    `userType` as cast(JSON_VALUE(`message`, '$.user_type')as VARCHAR),
      -- 用户 ID
    `userId` as cast(JSON_VALUE(`message`, '$.user_id')as BIGINT),
      -- 渠道 ID
    `agoraChannelId` as cast(JSON_VALUE(`message`, '$.agora_channel_id')as BIGINT),
      -- 事件
    `event` as cast(JSON_VALUE(`message`, '$.event')as VARCHAR),
      -- 视频故障记录
    `agoraVideoStateFr` as cast(JSON_VALUE(cast(JSON_VALUE(`message`, '$.agora_videoState')as VARCHAR), '$.fr')as BIGINT),
      -- 视频故障唯一标识 ID
    `agoraVideoStateUid` as cast(JSON_VALUE(cast(JSON_VALUE(`message`, '$.agora_videoState')as VARCHAR), '$.uid')as BIGINT),
      -- 音频丢失记录
    `agoraAudioStateLost` as cast(JSON_VALUE(cast(JSON_VALUE(`message`, '$.agora_audioState')as VARCHAR), '$.lost')as BIGINT),
      -- 音频丢失唯一标识 ID
    `agoraAudioStateUid` as cast(JSON_VALUE(cast(JSON_VALUE(`message`, '$.agora_audioState')as VARCHAR), '$.uid')as BIGINT),
      -- 事件时间
    `messageCreateTime` as cast(JSON_VALUE(`message`, '$.messageCreateTime')as BIGINT),
     WATERMARK wk FOR messageCreateTime AS WITHOFFSET (messageCreateTime, 60000)--为rowtime定义watermark
) with (
    type = 'kafka011',
    topic = 'agora_record',
    ...
);

输出表

create table user_av_mysql (
      -- 开窗时间
    start_time TIMESTAMP,
      -- 关窗时间
    end_time TIMESTAMP,
      --用户 ID
    user_id BIGINT,
    web_server_id BIGINT,
      -- 直播教室 ID
    classroom_id VARCHAR,
      -- 用户类型
    user_type VARCHAR,
    extra_uid BIGINT,
    event VARCHAR,
      -- 异常总和值
    event_sum BIGINT,
      -- 异常平均值
    event_avg DOUBLE,
      -- 异常次数
    event_count BIGINT,
    create_time TIMESTAMP
) with (
    type='rds',
    tableName='user_av_record',
    ...
);

直播课程(音频)网络监控

业务代码

insert into user_av_mysql
select 
    TUMBLE_START(messageCreateTime, INTERVAL '30' SECOND) as start_time,
    TUMBLE_END(messageCreateTime, INTERVAL '30' SECOND) as end_time,
    CASE WHEN `userId` is NULL THEN -1 else userId END as user_id,
    CASE WHEN `agoraChannelId` is NULL THEN -1 else agoraChannelId END as web_server_id,
    CASE WHEN `classroomId` is NULL THEN -1 else classroomId END as classroom_id,
    userType as user_type,
    agoraAudioStateUid as extra_uid,
    CONCAT(event,'_AUDIO_STATE') as event,
    SUM(agoraAudioStateLost) as event_sum,
    AVG(agoraAudioStateLost) as event_avg,
    COUNT(event) as event_count,
    CURRENT_TIMESTAMP as create_time
FROM qos_agora_record_kafka
WHERE agoraAudioStateLost >= 0 AND userType = 'student'
GROUP BY TUMBLE (messageCreateTime, INTERVAL '30' SECOND),
    userId,
    agoraChannelId,
    classroomId,
    userType,
    event,
    agoraAudioStateUid;

直播课程(视频)网络监控

业务代码

insert into user_av_mysql
select 
    TUMBLE_START(messageCreateTime,INTERVAL '30' SECOND) as start_time,
    TUMBLE_END(messageCreateTime,INTERVAL '30' SECOND) as end_time,
    CASE WHEN `userId` is NULL THEN -1 else userId END as user_id,
    CASE WHEN `agoraChannelId` is NULL THEN -1 else agoraChannelId END as web_server_id,
    CASE WHEN `classroomId` is NULL THEN -1 else classroomId END as classroom_id,
    userType as user_type,
    agoraVideoStateUid as extra_uid,
    CONCAT(event,'_VIDEO_STATE') as event,
    SUM(agoraVideoStateFr) as event_sum,
    AVG(agoraVideoStateFr) as event_avg,
    COUNT(event) as event_count,
    CURRENT_TIMESTAMP as create_time
FROM qos_agora_record_kafka
WHERE agoraVideoStateFr >= 0 AND userType = 'student'
GROUP BY TUMBLE (messageCreateTime, INTERVAL '30' SECOND),
    userId,
    agoraChannelId,
    classroomId,
    userType,
    event,
    agoraVideoStateUid;

场景四:运营分析

每小时不同 level 的学生注册人数统计

学生通过不同渠道(Web 广告输入、App 广告输入等)进行注册,本场景会读取注册端日志,并关联用户注册时的考试等级表(分为 A/B/C/D 四个 level),以此展现给运营人员,每小时不同 level&渠道 的学生注册人数,实时的调整运营推广策略。

  • 埋点数据样例
--学生表
{
    "id":"",
    "channel_id":"",
    "update_time":""
}
--用户注册数据
{
    "id":"",
    "name":"",
    "register_date_time":"",
    "status":""
}

--学生测试等级表:使用场景一“学生注册考试等级日志ETL清洗”的结果表

输入表

create table student_da_src (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
    `id` as JSON_VALUE (`message`, '$.id'),--用户 ID
    `channel_id` as JSON_VALUE (`message`, '$.channel_id'),--渠道 ID
    `update_time` as JSON_VALUE (`message`, '$.update_time')--更新时间
) with (
    type = 'kafka010',
    topic = 'uc_account-student',
    ...
);
create table user_da_in (
    messageKey VARBINARY,
    `message` VARBINARY,
    topic VARCHAR,
    `partition` INT,
    `offset` BIGINT,
    `id` as JSON_VALUE (`message`, '$.id'),--用户 ID
    `name` as JSON_VALUE (`message`, '$.name'),--用户名称
    `register_date_time` as JSON_VALUE (`message`, '$.register_date_time'),--注册时间
    `status` as JSON_VALUE (`message`, '$.status')--状态
) with (
    type = 'kafka010',
    topic = 'uc_account-user',
    `group.id` = 'uc_account-user',
    ...
);
create table channel_da (
    rowkey varchar,
    id VARCHAR,
    `level`  VARCHAR,
    primary key (rowkey),
    PERIOD FOR SYSTEM_TIME
) with (
    type = 'cloudhbase',
    tableName = 'databus:activity.channel',
    ...
    );

输出表

create table sink_table (
    uk varchar,
    reg_date bigint,
    level varchar,
    leads bigint,
    primary key (uk)
) with (
    type = 'elasticsearch',
    index = 'vk_app_es_sign_csh',
    typeName = 'vk_app_es_sign_csh',
    ...
);

业务代码

create view student_da_src_view as 
SELECT
   last_value(id) as id,
   last_value(update_time) as update_time,
   last_value(channel_id) as channel_id
from student_da_src
group by id;

create view user_da_in_view as 
SELECT
   last_value(id) as id,
   last_value(name) as name,
   last_value(register_date_time) as register_date_time,
   last_value(status) as status
from user_da_in
group by id;
 
insert into 
    sink_table 
SELECT
      case when level in ('A','B','C','D') then level else 'other' end as uk
     ,cast(date_format(register_date_time,'yyyyMMddHH') as bigint) as reg_date
     ,case when level in ('A','B','C','D') then level else 'other' end as levels
     ,COUNT(distinct t.id) AS leads
FROM 
     student_da_src_view t 
LEFT JOIN user_da_in_view  u ON u.id = t.id
LEFT JOIN channel_da FOR SYSTEM_TIME AS OF PROCTIME() ch ON ch.rowkey = MD5(t.channel_id)
where u.name not LIKE '%测试%' 
and u.name not LIKE 'DM\\_%' 
and u.name not LIKE '%test%' 
and u.status='NORMAL'
group by date_format(register_date_time,'yyyyMMddHH')
        ,case when level in ('A','B','C','D') then level else 'other' end
        ,concat(date_format(register_date_time,'yyyyMMddHH'),case when level in ('A','B','C','D') then level else 'other' end)
;

每日课程顾问追踪统计

首先通过 ID 进行分组,求出相同 ID 的最新消息(达到去重效果),在最新消息的基础上使用全局Group聚合,根据事件时间(天)、课程顾问 ID 统计每天每位课程顾问找学生确认“学习进度/约课”的次数。

  • 埋点数据样例
{
    "id":"",
    "leads_flow_event_id":"",
    "group_id":"",
    "cc_id":"",
    "student_id":"",
    "order_id":"",
    "leads_id":"",
    "confirm_date_time":"",
    "create_time":"",
    "update_time":"",
    "order_create_time":"",
    "canceled_date_time":"",
    "apply_refund_date":"",
    "status":""
}

输入表

create table cc_data_pack_order_info_src (
    `messageKey` VARBINARY,
    `message` VARBINARY,
    `topic` VARCHAR,
    `partition` INT,
    `offset` BIGINT,
      -- ID
    `id` as JSON_VALUE (`message`, '$.id'),
      -- (Course Consultant)课程顾问 ID
    `cc_id` as JSON_VALUE (`message`, '$.cc_id'),
      -- 学生 ID
    `student_id` as JSON_VALUE (`message`, '$.student_id'),
      -- 确认时间
    `confirm_date_time` as JSON_VALUE (`message`, '$.confirm_date_time'),
      -- 创建时间
    `create_time` as JSON_VALUE (`message`, '$.create_time'),
      -- 更新时间
    `update_time` as JSON_VALUE (`message`, '$.update_time'),
      -- 订单创建时间
    `order_create_time` as JSON_VALUE (`message`, '$.order_create_time'),
      -- 订单取消时间
    `canceled_date_time` as JSON_VALUE (`message`, '$.canceled_date_time'),
    -- 付款时间
    `apply_refund_date` as JSON_VALUE (`message`, '$.apply_refund_date'),
      -- 状态
    `status` as JSON_VALUE (`message`, '$.status')
) with (
    type = 'kafka010',
    topic = 'data_pack_order_info',
    `group.id` = 'data_pack_order_info',
    ...
);

输出表

CREATE TABLE index_sink (
  `cc_id` bigint(20) NOT NULL,
  `cc_index` bigint(10) NOT NULL, 
  `type` int(6) NOT NULL,
  `attribution_time` varchar NOT NULL,
  `update_time` timestamp NOT NULL,
  PRIMARY KEY (`cc_id`, `type`, `attribution_time`)
) WITH (
    type='rds',
    tableName='staff_index',
    ...
);

业务代码


CREATE VIEW cc_data_pack_order_info_view as
select
    last_value (cc_id) as cc_id,
    last_value (confirm_date_time) as confirm_date_time,
    last_value (`status`) as `status`
from
    cc_data_pack_order_info_src
group by
    id;
    
    
insert into index_sink
select 
    cast(cc_id as bigint) as cc_id,
    count(*) as cc_index,
    cast(1 as int) as type,
    date_format(confirm_date_time,'yyyy-MM-dd') as attribution_time,
    current_timestamp as update_time
from
    cc_data_pack_order_info_view 
where 
    confirm_date_time is not null
    and `status` is not null
    and `status` = 3 
group by 
    date_format(confirm_date_time,'yyyy-MM-dd'), cc_id;

实时计算 Flink 版产品交流群

test

阿里云实时计算Flink - 解决方案:
https://developer.aliyun.com/article/765097
阿里云实时计算Flink - 场景案例:
https://ververica.cn/corporate-practice
阿里云实时计算Flink - 产品详情页:
https://www.aliyun.com/product/bigdata/product/sc

相关文章
|
2月前
|
SQL 运维 网络安全
【实践】基于Hologres+Flink搭建GitHub实时数据查询
本文介绍了如何利用Flink和Hologres构建GitHub公开事件数据的实时数仓,并对接BI工具实现数据实时分析。流程包括创建VPC、Hologres、OSS、Flink实例,配置Hologres内部表,通过Flink实时写入数据至Hologres,查询实时数据,以及清理资源等步骤。
|
13天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
313 2
探索Flink动态CEP:杭州银行的实战案例
|
4天前
|
DataWorks 关系型数据库 OLAP
云端问道5期实践教学-基于Hologres轻量实时的高性能OLAP分析
本文基于Hologres轻量实时的高性能OLAP分析实践,通过云起实验室进行实操。实验步骤包括创建VPC和交换机、开通Hologres实例、配置DataWorks、创建网关、设置数据源、创建实时同步任务等。最终实现MySQL数据实时同步到Hologres,并进行高效查询分析。实验手册详细指导每一步操作,确保顺利完成。
|
7天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
26天前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
474 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
27天前
|
流计算 开发者
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
|
2月前
|
运维 数据挖掘 网络安全
场景实践 | 基于Flink+Hologres搭建GitHub实时数据分析
基于Flink和Hologres构建的实时数仓方案在数据开发运维体验、成本与收益等方面均表现出色。同时,该产品还具有与其他产品联动组合的可能性,能够为企业提供更全面、更智能的数据处理和分析解决方案。
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
78 1
|
2月前
|
数据采集 运维 搜索推荐
实时计算Flink场景实践
在数字化时代,实时数据处理愈发重要。本文分享了作者使用阿里云实时计算Flink版和流式数据湖仓Paimon的体验,展示了其在电商场景中的应用,包括数据抽取、清洗、关联和聚合,突出了系统的高效、稳定和低延迟特点。
68 0

相关产品

  • 实时计算 Flink版