【最佳实践】不可不掌握的2种有效减少Logstash启动等待时间的使用技巧

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Logstash 是 Elastic Stack 中功能最强大的 ETL 工具,相较于 beats 家族,Logstash 略显臃肿,但却功能丰富及处理能力强大。大家在使用的过程中肯定体验过其启动时的慢吞吞,那么有什么办法可以减少 Logstash 的启动等待时间,提高编写其处理配置文件的效率呢?本文给大家推荐一个小技巧,帮助大家解决如下两个问题,让大家更好地与这个笨重的大家伙相处。

作者介绍

魏彬,普翔科技 CTO,开源软件爱好者,中国第一位 Elastic 认证工程师,《Elastic日报》和 《ElasticTalk》社区项目发起人,被 elastic 中国公司授予 2019 年度合作伙伴架构师特别贡献奖。对 Elasticsearch、Kibana、Beats、Logstash、Grafana 等开源软件有丰富的实践经验,为零售、金融、保险、证券、科技等众多行业的客户提供过咨询和培训服务,帮助客户在实际业务中找准开源软件的定位,实现从 0 到 1 的落地、从 1 到 N 的拓展,产生实际的业务价值。

解决方案

1、减少 Logstash 重启的次数,也就节省宝贵的时间
2、方便快捷地向 Logstash 输入需要处理的内容

1、打开 reload 配置开关

Logstash 启动的时候可以加上 -r 的参数来做到配置文件热加载,效果是:

• 当你修改了配置文件后,无需重启 Logstash 即可让新配置文件生效。

它的含义如下:

image.png

当你写好配置文件,比如 test.conf ,启动命令如下:

bin/logstash -f test.conf -r

启动完毕,修改 test.conf 的内容并保存后,过 1 秒钟,你会发现 Logstash 端有类似如下日志输出(注意红色框标记的部分),此时说明 reload 的成功。

image.png

如果你修改的配置文件有错误,会看到报错的日志,你可以根据错误提示修改。

image.png

至此,第一个问题解决!

2. 使用 HTTP INPUT

编写配置文件的另一个痛点是需要针对不同格式的输入内容进行详细的测试,以防解析报错的情况出现。此时大家常用标准输入来解决这个问题(stdin input),但是标准输入对于文字编辑支持不太友好,而且配置文件热更新的功能也不支持标准输入。
在这里向大家推荐使用 http input 插件,配置如下:

input{
    http{
        port => 7474
        codec => "json"
    }
}

然后大家再用自己喜欢的 http 请求工具,比如 POSTMan、Insomnia 等向 http://loclahost:7474发送待测试内容即可,如下是 Insomnia 的截图。

image.png

至此,第二个问题也解决了。

总结

相信看到这里,大家一定是跃跃欲试了,赶紧打开电脑,找到 Logstash,然后编辑 test.conf,输入如下内容:

input{
    http{
        port => 7474
        codec => "json"
    }
}
filter{
}
output{
        stdout{
        codec => rubydebug{
            metadata => true
        }
    }
}

然后执行启动命令:

bin/logstash -f test.conf -r

打开 Insomnia ,输入要测试的内容,点击发送,开始舒爽流畅的配置文件编写之旅吧!

声明:本文由原文《不可不掌握的Logstash使用技巧》作者“魏彬”授权转载,对未经许可擅自使用者,保留追究其法律责任的权利。


image.png

阿里云Elastic Stack】100%兼容开源ES,独有9大能力,提供免费X-pack服务(单节点价值$6000)

相关活动


更多折扣活动,请访问阿里云 Elasticsearch 官网

阿里云 Elasticsearch 商业通用版,1核2G ,SSD 20G首月免费
阿里云 Logstash 2核4G首月免费


image.png

image.png

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
缓存 Java 测试技术
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
使用JMeter对项目各个接口进行压力测试,并对前端进行动静分离优化,优化三级分类查询接口的性能
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
|
3月前
|
存储 缓存 NoSQL
Redis内存管理揭秘:掌握淘汰策略,让你的数据库在高并发下也能游刃有余,守护业务稳定运行!
【8月更文挑战第22天】Redis的内存淘汰策略管理内存使用,防止溢出。主要包括:noeviction(拒绝新写入)、LRU/LFU(淘汰最少使用/最不常用数据)、RANDOM(随机淘汰)及TTL(淘汰接近过期数据)。策略选择需依据应用场景、数据特性和性能需求。可通过Redis命令行工具或配置文件进行设置。
84 2
|
3月前
|
缓存 监控 Java
"Java垃圾回收太耗时?阿里HBase GC优化秘籍大公开,让你的应用性能飙升90%!"
【8月更文挑战第17天】阿里巴巴在HBase实践中成功将Java垃圾回收(GC)时间降低90%。通过选用G1垃圾回收器、精细调整JVM参数(如设置堆大小、目标停顿时间等)、优化代码减少内存分配(如使用对象池和缓存),并利用监控工具分析GC行为,有效缓解了高并发大数据场景下的性能瓶颈,极大提升了系统运行效率。
81 4
|
4月前
|
Java BI 运维
开发与运维配置问题之升级机器配置后出现频繁的GC问题和超长的GC时间如何解决
开发与运维配置问题之升级机器配置后出现频繁的GC问题和超长的GC时间如何解决
38 1
|
4月前
|
缓存 自然语言处理 Java
浅析JAVA日志中的性能实践与原理解释问题之减少看得见的业务开销问题如何解决
浅析JAVA日志中的性能实践与原理解释问题之减少看得见的业务开销问题如何解决
|
6月前
|
分布式计算 Java 数据库连接
回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?
回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?
61 1
|
6月前
|
存储 缓存 监控
快速掌握Redis优化要点,告别性能瓶颈!
# Redis优化指南 了解如何提升Redis性能,从读写方式(整体与部分)、KV size、Key数量、读写峰值、命中率、过期策略、平均穿透加载时间、可运维性、安全性等方面着手。选择合适的读写策略,如只整体读写或部分读写变更,优化KV size避免过大或差异过大,合理管理Key数量,应对不同读写峰值,监控命中率并持续优化,设置智能过期策略,减少平均穿透加载时间,确保高可运维性并强化安全性。一起探索Redis的性能潜力!
1562 5
|
6月前
|
监控 固态存储 安全
源码剖析:Elasticsearch 段合并调度及优化手段
源码剖析:Elasticsearch 段合并调度及优化手段
73 0
|
6月前
|
监控 前端开发 Java
案例 2: 某寿险公司核心系统 GC 开销超限问题分析
案例 2: 某寿险公司核心系统 GC 开销超限问题分析
|
存储 Java 数据安全/隐私保护
项目实战典型案例15——高并发环境下由于使用全局变量导致数据混乱 高并发环境下对象被大量创建,导致GC并是CPU飙升
项目实战典型案例15——高并发环境下由于使用全局变量导致数据混乱 高并发环境下对象被大量创建,导致GC并是CPU飙升
157 0
项目实战典型案例15——高并发环境下由于使用全局变量导致数据混乱 高并发环境下对象被大量创建,导致GC并是CPU飙升
下一篇
无影云桌面