回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?

简介: 回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?

ChatGPT的答案:

当Spark处理大量小任务时,会产生大量的网络通信,这会导致性能下降。此外,处理小任务时,单条记录的资源开销也会增加,这会使性能下降。因此,调优时需要尽量减少小任务的数量,以及降低单条记录的资源开销,以提高性能。

降低过多小任务:

filter操作使用不当,很容易引发麻烦。假如一个任务有3个parition,经过filger过滤之后,可能导致部分剩下很少,有些剩余很多,剩余很多的在下一步计算量很大,会拖后腿,其他的作业很快就做完了,而剩余很多的要执行很长时间,整个任务都要延误,而其他很快执行完的作业早就释放资源了

造成资源还的浪费

对于这种场景有2种优化策略:

1)coalses:合并已有的partiion,性能非常高,但是很有可能还不是很均与,

大的依旧很大,小的进行了合并

2)repartion:根据数据量灯亮划分,每个partion尽可能均匀,会经过一次shuffle比较均匀

降低单条记录开销

做过Java连接数据库操作的人都知道,要尽量避免数据库链接的频繁建立和断开,方法很多,比如数据库连接池的发明。单机版本对数据库的连接操作比较容易管理和控制,但在分布式环境下,数据库的连接管理和控制很麻烦,数据的连接是不可序列化的,因此分布式环境下,统一管理数据库连接显然是不靠谱的。比如这段代码,如果写数据到数据库,就会频繁建立和断开连接,显然是低效率的。因为数据库连接的不可序列化,你也不可能把conn拿出来。

解决方法是:使用mapPartitions或者mapWith操作符

原因在于mapPartitions是map的调用的粒度不同,map的输入变换函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区。

假设一个rdd有10个元素,分成3个分区。如果使用map方法,map中的输入函数会被调用10次;而使用mapPartitions方法的话,其输入函数会只会被调用3次,每个分区调用1次。在大数据集情况下的资源初始化开销和批处理处理,尤其数据库链接操作,显得特别好用。


目录
相关文章
|
2月前
|
存储 缓存 分布式计算
Spark任务OOM问题如何解决?
大家好,我是V哥。在实际业务中,Spark任务常因数据量过大、资源分配不合理或代码瓶颈导致OOM(Out of Memory)。本文详细分析了各种业务场景下的OOM原因,并提供了优化方案,包括调整Executor内存和CPU资源、优化内存管理策略、数据切分及减少宽依赖等。通过综合运用这些方法,可有效解决Spark任务中的OOM问题。关注威哥爱编程,让编码更顺畅!
189 3
|
4月前
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之如何开发ODPS Spark任务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
消息中间件 分布式计算 Java
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
45 5
|
6月前
|
分布式计算 运维 Serverless
EMR Serverless Spark PySpark流任务体验报告
阿里云EMR Serverless Spark是一款全托管的云原生大数据计算服务,旨在简化数据处理流程,降低运维成本。测评者通过EMR Serverless Spark提交PySpark流任务,体验了从环境准备、集群创建、网络连接到任务管理的全过程。通过这次测评,可以看出阿里云EMR Serverless Spark适合有一定技术基础的企业,尤其是需要高效处理大规模数据的场景,但新用户需要投入时间和精力学习和适应。
7187 43
EMR Serverless Spark PySpark流任务体验报告
|
3月前
|
SQL 机器学习/深度学习 分布式计算
Spark适合处理哪些任务?
【9月更文挑战第1天】Spark适合处理哪些任务?
170 3
|
4月前
|
存储 分布式计算 供应链
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
Spark在供应链核算中应用问题之通过Spark UI进行任务优化如何解决
|
5月前
|
分布式计算 Java Serverless
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
本文以 ECS 连接 EMR Serverless Spark 为例,介绍如何通过 EMR Serverless spark-submit 命令行工具进行 Spark 任务开发。
420 7
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
|
5月前
|
分布式计算 运维 Serverless
EMR Serverless Spark 实践教程 | 通过 EMR Serverless Spark 提交 PySpark 流任务
在大数据快速发展的时代,流式处理技术对于实时数据分析至关重要。EMR Serverless Spark提供了一个强大而可扩展的平台,它不仅简化了实时数据处理流程,还免去了服务器管理的烦恼,提升了效率。本文将指导您使用EMR Serverless Spark提交PySpark流式任务,展示其在流处理方面的易用性和可运维性。
284 7
EMR Serverless Spark 实践教程 | 通过 EMR Serverless Spark 提交 PySpark 流任务
|
4月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
216 0
|
6月前
|
弹性计算 分布式计算 DataWorks
DataWorks产品使用合集之spark任务如何跨空间取表数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
42 1

热门文章

最新文章