SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)

简介: SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、支持向量机SVM

算法原理

支持向量机(Support Vetor Machine,SVM)是一种对线性和非线性数据进行分类的方法。SVM 使用一种非线性映射,把原始训练数据映射到较高的维上,在新的维上,搜索最佳分离超平面

SVM可分类为三类:线性可分(linear SVM in linearly separable case)的线性SVM、线性不可分的线性SVM、非线性(nonlinear)SVM

SVM可以用于数值预测和分类。对于数据非线性可分的情况,通过扩展线性SVM的方法,得到非线性的SVM,即采用非线性映射把输入数据变换到较高维空间,在新的空间搜索分离超平面

SVM的主要目标是找到最佳超平面,以便在不同类的数据点之间进行正确分类。超平面的维度等于输入特征的数量减去1。图11-3显示了分类的最佳超平面和支持向量(实心的数据样本)

利用SVM对iris数据集分类

结果如下

部分代码如下

import numpy as np
from sklearn import svm
from sklearn import datasets
from sklearn import metrics
from sklearn import model_selection
import matplotlib.pyplot as plt
iris = datasets.load_iris()
x, y = iris.data,iris.target
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, random_state = 1, test_size = 0.2)
classifier=svm.SVC(kernel='linear',gamma=0.1,decision_function_shape='ovo',C=0.1)
classifier.fit(x_train, y_train.ravel())
print("SVM-输出训练集的准确率为:", classifier.score(x_train, y_train))
print("SVM-输出测.predict(x_test)
classreport = metrics.classification_report(y_test,y_hat)
print(classreport)

二、朴素贝叶斯分类

1. 算法原理

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理(Bayes theorem)为基础,采用了概率推理方法

算法示例:对iris数据集进行朴素贝叶斯分类

Scikit-learn模块中有Naïve Bayes子模块,包含了各种贝叶斯算法。利用贝叶斯分类器时首先设置分类器,然后利用训练样本进行训练和分类

结果如下

from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
iris = load_iris()
clf = GaussianNB()#设置分类器
clf.fit(iris.data,iris.target)#训练分类器
y_pred = clf.predict(iris.data)#预测
print("Number of mislabeled points out of %d points:%d" %(iris.data.shape[0],(iris.target != y_pred).sum()))

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
89 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
29 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
28天前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
21 0
|
22天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
8天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
8天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
8天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
24 3
|
19天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。