【MATLAB】数据拟合第13期-基于最小二乘支持向量机的拟合

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 【MATLAB】数据拟合第13期-基于最小二乘支持向量机的拟合

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

基于最小二乘支持向量机的拟合算法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。这种算法在曲线拟合中应用广泛,包括线性拟合和非线性拟合。

在曲线拟合中,我们通常有多个观测点数据,并且我们希望找到一个简单的近似函数来最好地逼近这些数据。这个近似函数不必满足插值原理,只需要使得函数值与观测值之间的差值尽可能小。这就是曲线拟合的基本思想。

基于最小二乘支持向量机的拟合算法通过最小化误差的平方和来寻找最佳的拟合函数。这个误差平方和是所有观测点上的函数值与实际观测值之间的差的平方和。通过最小化这个误差平方和,我们可以得到一个最佳的拟合函数。

对于非线性拟合,我们通常需要使用非线性函数作为拟合函数。在这种情况下,基于最小二乘支持向量机的拟合算法可以通过对输入向量进行一些非线性变换来得到一个更复杂的拟合函数。这种变换可以通过支持向量机来实现,支持向量机是一种可以处理非线性问题的机器学习算法。

总的来说,基于最小二乘支持向量机的拟合算法是一种强大的工具,可以用于处理各种曲线拟合问题,包括线性拟合和非线性拟合。它通过最小化误差的平方和来寻找最佳的拟合函数,从而得到一个更精确的模型来描述数据。

基于最小二乘支持向量机的拟合算法是一种利用支持向量机(SVM)进行曲线拟合的方法。它的理论及原理如下:

  1. 支持向量机(SVM):SVM是一种监督学习算法,用于分类和回归分析。在曲线拟合中,SVM被用作一个非线性映射函数,将输入空间映射到高维特征空间,使得在特征空间中能够应用线性回归或分类方法。
  2. 最小二乘法:最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。在曲线拟合中,最小二乘法被用来优化拟合函数的参数,使得拟合函数与观测数据之间的误差最小。
  3. 基于最小二乘支持向量机的拟合算法:该算法首先使用SVM将输入数据映射到高维特征空间,然后在特征空间中使用最小二乘法对数据进行拟合。具体步骤如下:

(1)选择合适的核函数和参数,将输入数据映射到高维特征空间;

(2)在特征空间中构建线性回归模型,使用最小二乘法求解模型的参数;

(3)将求解得到的参数应用到原始输入空间,得到最终的拟合曲线。

基于最小二乘支持向量机的拟合算法具有以下优点:

  1. 能够处理非线性问题,对于复杂的曲线拟合任务具有较好的性能;
  2. 具有较好的鲁棒性,能够处理噪声数据和非线性数据;
  3. 可以处理高维数据和大规模数据集,具有较好的扩展性。

总之,基于最小二乘支持向量机的拟合算法是一种有效的曲线拟合方法,它结合了SVM和最小二乘法的优点,能够处理复杂的非线性问题,具有较好的鲁棒性和扩展性。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】数据拟合第 13 期-基于最小二乘支持向量机的拟合

https://mbd.pub/o/bread/ZZiXm5Zy

【MATLAB】数据拟合第12期-基于高斯核回归的拟合算法

https://mbd.pub/o/bread/ZZiXlp5w

【MATLAB】数据拟合第 11 期-基于粒子群迭代的拟合算法

https://mbd.pub/o/bread/ZZiVmZly

【MATLAB】数据拟合第 10 期-二阶多项式的局部加权回归拟合算法

https://mbd.pub/o/bread/ZZiVlZpu

【MATLAB】史上最全的9种数据拟合算法全家桶:

https://mbd.pub/o/bread/ZJeWlZls

MATLAB 开源算法及绘图代码合集汇总一览

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
18天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
3月前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
100 10
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
119 6
|
7月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
8月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
199 4
|
7月前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
7月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
65 0
|
8月前
|
算法 数据安全/隐私保护
matlab程序,傅里叶变换,频域数据,补零与不补零傅里叶变换
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
8月前
|
数据安全/隐私保护
matlab 曲线光滑,去毛刺,去离群值,数据滤波,高通滤波,低通滤波,带通滤波,带阻滤波
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度