【MATLAB】小波分解+FFT+HHT组合算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 【MATLAB】小波分解+FFT+HHT组合算法


1 基本定义

小波分解+FFT+HHT组合算法是一种基于小波变换、快速傅里叶变换(FFT)和希尔伯特-黄变换(HHT)的组合算法。

小波变换是一种信号分析方法,能够将信号分解成多个频带,并提取其中的特征。FFT是一种高效的计算离散傅里叶变换(DFT)和其逆变换的算法,能够快速计算信号在频域上的表达,提供信号的频率特征。HHT是一种用于分析非线性和非平稳信号的数学工具,能够将信号分解成一系列固有模态函数(IMF),并计算每个IMF的瞬时频率,提供信号的时频特征。

将小波分解、FFT和HHT组合在一起,可以形成一种强大的分析方法,适用于处理非线性和非平稳信号,如语音信号、图像信号等。

这种组合算法可以按照以下步骤进行:

  1. 对信号进行小波分解,将信号分解成高频部分和低频部分。
  2. 对高频部分进行FFT变换,计算信号的频域特征。
  3. 对低频部分进行HHT变换,将信号分解成一系列IMF,并计算每个IMF的瞬时频率。
  4. 将高频部分的频域特征和低频部分的时频特征结合在一起,得到信号的全局特征。

这种组合算法的优点在于,小波分解可以提取信号的高频细节,FFT可以提供信号的频率特征,而HHT可以提供信号的时频特征。通过将这三种方法结合在一起,可以更全面地分析信号的特征,适用于各种不同的应用场景。

需要注意的是,这种组合算法需要较高的计算能力,特别是对于大规模的数据集,可能需要较长的计算时间。因此,在实际应用中,需要根据具体的需求和计算资源进行选择和优化。

除了计算能力的要求外,这种组合算法还有一些其他的优点。

首先,小波变换、FFT和HHT都具有很好的鲁棒性。小波变换能够适应各种不同的信号特性,FFT和HHT也能够处理非平稳和非线性的信号。因此,这种组合算法可以处理各种复杂的情况,对于实际应用中的各种信号都能够得到较好的结果。

其次,小波变换、FFT和HHT都具有广泛的应用领域。小波变换在图像处理、信号压缩等领域都有广泛的应用,FFT在数字信号处理等领域也得到了广泛的应用,而HHT在语音信号处理、机械故障诊断等领域也有广泛的应用。因此,这种组合算法可以应用于各种不同的领域,具有广泛的应用前景。

最后,小波变换、FFT和HHT都具有很好的可解释性。小波变换可以将信号分解成不同的频带,每个频带的含义都很明确,可以很好地解释信号的特性。FFT可以将信号的频率成分表示出来,可以很好地解释信号的频率特性。而HHT可以将信号分解成一系列IMF,每个IMF的瞬时频率都可以解释为信号的时频特性。因此,这种组合算法的结果具有很好的可解释性,可以很好地理解信号的特性。

总的来说,小波分解+FFT+HHT组合算法是一种非常强大的分析方法,具有广泛的应用前景和很好的可解释性。但是它也需要较高的计算能力,需要根据具体的需求和计算资源进行选择和优化。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】小波分解+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZeUk59w

【MATLAB】ICEEMDAN+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZeTlp5s

【MATLAB】CEEMDAN+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZacmZZp

【MATLAB】CEEMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZackp1r

【MATLAB】EEMD+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZablpxr

【MATLAB】EMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZablJxs

MATLAB 开源算法及绘图代码合集汇总一览

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
17天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
24天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
150 15