【深度学习】实验02 鸢尾花数据集分析

简介: 【深度学习】实验02 鸢尾花数据集分析

鸢尾花数据集分析

鸢尾花数据集分析指的是对鸢尾花数据集进行数据分析和建模的过程。鸢尾花数据集是一种经典的分类问题数据集,常用于机器学习和统计模型的教学和方法验证。

监督学习-决策树

# 导入机器学习相关库
from sklearn import datasets
from sklearn import tree
import matplotlib.pyplot as plt
import numpy as np
# Iris数据集是常用的分类实验数据集,
# 由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,
# 是一类多重变量分析的数据集。数据集包含150个数据集,
# 分为3类,每类50个数据,每个数据包含4个属性。
# 可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
#载入数据集
iris = datasets.load_iris()
iris
   {'data': array([[5.1, 3.5, 1.4, 0.2],
           [4.9, 3. , 1.4, 0.2],
           [4.7, 3.2, 1.3, 0.2],
           [4.6, 3.1, 1.5, 0.2],
           [5. , 3.6, 1.4, 0.2],
           [5.4, 3.9, 1.7, 0.4],
           [4.6, 3.4, 1.4, 0.3],
           [5. , 3.4, 1.5, 0.2],
           [4.4, 2.9, 1.4, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [5.4, 3.7, 1.5, 0.2],
           [4.8, 3.4, 1.6, 0.2],
           [4.8, 3. , 1.4, 0.1],
           [4.3, 3. , 1.1, 0.1],
           [5.8, 4. , 1.2, 0.2],
           [5.7, 4.4, 1.5, 0.4],
           [5.4, 3.9, 1.3, 0.4],
           [5.1, 3.5, 1.4, 0.3],
           [5.7, 3.8, 1.7, 0.3],
           [5.1, 3.8, 1.5, 0.3],
           [5.4, 3.4, 1.7, 0.2],
           [5.1, 3.7, 1.5, 0.4],
           [4.6, 3.6, 1. , 0.2],
           [5.1, 3.3, 1.7, 0.5],
           [4.8, 3.4, 1.9, 0.2],
           [5. , 3. , 1.6, 0.2],
           [5. , 3.4, 1.6, 0.4],
           [5.2, 3.5, 1.5, 0.2],
           [5.2, 3.4, 1.4, 0.2],
           [4.7, 3.2, 1.6, 0.2],
           [4.8, 3.1, 1.6, 0.2],
           [5.4, 3.4, 1.5, 0.4],
           [5.2, 4.1, 1.5, 0.1],
           [5.5, 4.2, 1.4, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [5. , 3.2, 1.2, 0.2],
           [5.5, 3.5, 1.3, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [4.4, 3. , 1.3, 0.2],
           [5.1, 3.4, 1.5, 0.2],
           [5. , 3.5, 1.3, 0.3],
           [4.5, 2.3, 1.3, 0.3],
           [4.4, 3.2, 1.3, 0.2],
           [5. , 3.5, 1.6, 0.6],
           [5.1, 3.8, 1.9, 0.4],
           [4.8, 3. , 1.4, 0.3],
           [5.1, 3.8, 1.6, 0.2],
           [4.6, 3.2, 1.4, 0.2],
           [5.3, 3.7, 1.5, 0.2],
           [5. , 3.3, 1.4, 0.2],
           [7. , 3.2, 4.7, 1.4],
           [6.4, 3.2, 4.5, 1.5],
           [6.9, 3.1, 4.9, 1.5],
           [5.5, 2.3, 4. , 1.3],
           [6.5, 2.8, 4.6, 1.5],
           [5.7, 2.8, 4.5, 1.3],
           [6.3, 3.3, 4.7, 1.6],
           [4.9, 2.4, 3.3, 1. ],
           [6.6, 2.9, 4.6, 1.3],
           [5.2, 2.7, 3.9, 1.4],
           [5. , 2. , 3.5, 1. ],
           [5.9, 3. , 4.2, 1.5],
           [6. , 2.2, 4. , 1. ],
           [6.1, 2.9, 4.7, 1.4],
           [5.6, 2.9, 3.6, 1.3],
           [6.7, 3.1, 4.4, 1.4],
           [5.6, 3. , 4.5, 1.5],
           [5.8, 2.7, 4.1, 1. ],
           [6.2, 2.2, 4.5, 1.5],
           [5.6, 2.5, 3.9, 1.1],
           [5.9, 3.2, 4.8, 1.8],
           [6.1, 2.8, 4. , 1.3],
           [6.3, 2.5, 4.9, 1.5],
           [6.1, 2.8, 4.7, 1.2],
           [6.4, 2.9, 4.3, 1.3],
           [6.6, 3. , 4.4, 1.4],
           [6.8, 2.8, 4.8, 1.4],
           [6.7, 3. , 5. , 1.7],
           [6. , 2.9, 4.5, 1.5],
           [5.7, 2.6, 3.5, 1. ],
           [5.5, 2.4, 3.8, 1.1],
           [5.5, 2.4, 3.7, 1. ],
           [5.8, 2.7, 3.9, 1.2],
           [6. , 2.7, 5.1, 1.6],
           [5.4, 3. , 4.5, 1.5],
           [6. , 3.4, 4.5, 1.6],
           [6.7, 3.1, 4.7, 1.5],
           [6.3, 2.3, 4.4, 1.3],
           [5.6, 3. , 4.1, 1.3],
           [5.5, 2.5, 4. , 1.3],
           [5.5, 2.6, 4.4, 1.2],
           [6.1, 3. , 4.6, 1.4],
           [5.8, 2.6, 4. , 1.2],
           [5. , 2.3, 3.3, 1. ],
           [5.6, 2.7, 4.2, 1.3],
           [5.7, 3. , 4.2, 1.2],
           [5.7, 2.9, 4.2, 1.3],
           [6.2, 2.9, 4.3, 1.3],
           [5.1, 2.5, 3. , 1.1],
           [5.7, 2.8, 4.1, 1.3],
           [6.3, 3.3, 6. , 2.5],
           [5.8, 2.7, 5.1, 1.9],
           [7.1, 3. , 5.9, 2.1],
           [6.3, 2.9, 5.6, 1.8],
           [6.5, 3. , 5.8, 2.2],
           [7.6, 3. , 6.6, 2.1],
           [4.9, 2.5, 4.5, 1.7],
           [7.3, 2.9, 6.3, 1.8],
           [6.7, 2.5, 5.8, 1.8],
           [7.2, 3.6, 6.1, 2.5],
           [6.5, 3.2, 5.1, 2. ],
           [6.4, 2.7, 5.3, 1.9],
           [6.8, 3. , 5.5, 2.1],
           [5.7, 2.5, 5. , 2. ],
           [5.8, 2.8, 5.1, 2.4],
           [6.4, 3.2, 5.3, 2.3],
           [6.5, 3. , 5.5, 1.8],
           [7.7, 3.8, 6.7, 2.2],
           [7.7, 2.6, 6.9, 2.3],
           [6. , 2.2, 5. , 1.5],
           [6.9, 3.2, 5.7, 2.3],
           [5.6, 2.8, 4.9, 2. ],
           [7.7, 2.8, 6.7, 2. ],
           [6.3, 2.7, 4.9, 1.8],
           [6.7, 3.3, 5.7, 2.1],
           [7.2, 3.2, 6. , 1.8],
           [6.2, 2.8, 4.8, 1.8],
           [6.1, 3. , 4.9, 1.8],
           [6.4, 2.8, 5.6, 2.1],
           [7.2, 3. , 5.8, 1.6],
           [7.4, 2.8, 6.1, 1.9],
           [7.9, 3.8, 6.4, 2. ],
           [6.4, 2.8, 5.6, 2.2],
           [6.3, 2.8, 5.1, 1.5],
           [6.1, 2.6, 5.6, 1.4],
           [7.7, 3. , 6.1, 2.3],
           [6.3, 3.4, 5.6, 2.4],
           [6.4, 3.1, 5.5, 1.8],
           [6. , 3. , 4.8, 1.8],
           [6.9, 3.1, 5.4, 2.1],
           [6.7, 3.1, 5.6, 2.4],
           [6.9, 3.1, 5.1, 2.3],
           [5.8, 2.7, 5.1, 1.9],
           [6.8, 3.2, 5.9, 2.3],
           [6.7, 3.3, 5.7, 2.5],
           [6.7, 3. , 5.2, 2.3],
           [6.3, 2.5, 5. , 1.9],
           [6.5, 3. , 5.2, 2. ],
           [6.2, 3.4, 5.4, 2.3],
           [5.9, 3. , 5.1, 1.8]]),
    'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
    'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
    'DESCR': 'Iris Plants Database\n====================\n\nNotes\n-----\nData Set Characteristics:\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThis is a copy of UCI ML iris datasets.\nhttp://archive.ics.uci.edu/ml/datasets/Iris\n\nThe famous Iris database, first used by Sir R.A Fisher\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\nReferences\n----------\n   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...\n',
    'feature_names': ['sepal length (cm)',
     'sepal width (cm)',
     'petal length (cm)',
     'petal width (cm)']}
X = iris['data']
Y = iris['target']
iris_target_name = ['target_name']
X, Y
   (array([[5.1, 3.5, 1.4, 0.2],
           [4.9, 3. , 1.4, 0.2],
           [4.7, 3.2, 1.3, 0.2],
           [4.6, 3.1, 1.5, 0.2],
           [5. , 3.6, 1.4, 0.2],
           [5.4, 3.9, 1.7, 0.4],
           [4.6, 3.4, 1.4, 0.3],
           [5. , 3.4, 1.5, 0.2],
           [4.4, 2.9, 1.4, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [5.4, 3.7, 1.5, 0.2],
           [4.8, 3.4, 1.6, 0.2],
           [4.8, 3. , 1.4, 0.1],
           [4.3, 3. , 1.1, 0.1],
           [5.8, 4. , 1.2, 0.2],
           [5.7, 4.4, 1.5, 0.4],
           [5.4, 3.9, 1.3, 0.4],
           [5.1, 3.5, 1.4, 0.3],
           [5.7, 3.8, 1.7, 0.3],
           [5.1, 3.8, 1.5, 0.3],
           [5.4, 3.4, 1.7, 0.2],
           [5.1, 3.7, 1.5, 0.4],
           [4.6, 3.6, 1. , 0.2],
           [5.1, 3.3, 1.7, 0.5],
           [4.8, 3.4, 1.9, 0.2],
           [5. , 3. , 1.6, 0.2],
           [5. , 3.4, 1.6, 0.4],
           [5.2, 3.5, 1.5, 0.2],
           [5.2, 3.4, 1.4, 0.2],
           [4.7, 3.2, 1.6, 0.2],
           [4.8, 3.1, 1.6, 0.2],
           [5.4, 3.4, 1.5, 0.4],
           [5.2, 4.1, 1.5, 0.1],
           [5.5, 4.2, 1.4, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [5. , 3.2, 1.2, 0.2],
           [5.5, 3.5, 1.3, 0.2],
           [4.9, 3.1, 1.5, 0.1],
           [4.4, 3. , 1.3, 0.2],
           [5.1, 3.4, 1.5, 0.2],
           [5. , 3.5, 1.3, 0.3],
           [4.5, 2.3, 1.3, 0.3],
           [4.4, 3.2, 1.3, 0.2],
           [5. , 3.5, 1.6, 0.6],
           [5.1, 3.8, 1.9, 0.4],
           [4.8, 3. , 1.4, 0.3],
           [5.1, 3.8, 1.6, 0.2],
           [4.6, 3.2, 1.4, 0.2],
           [5.3, 3.7, 1.5, 0.2],
           [5. , 3.3, 1.4, 0.2],
           [7. , 3.2, 4.7, 1.4],
           [6.4, 3.2, 4.5, 1.5],
           [6.9, 3.1, 4.9, 1.5],
           [5.5, 2.3, 4. , 1.3],
           [6.5, 2.8, 4.6, 1.5],
           [5.7, 2.8, 4.5, 1.3],
           [6.3, 3.3, 4.7, 1.6],
           [4.9, 2.4, 3.3, 1. ],
           [6.6, 2.9, 4.6, 1.3],
           [5.2, 2.7, 3.9, 1.4],
           [5. , 2. , 3.5, 1. ],
           [5.9, 3. , 4.2, 1.5],
           [6. , 2.2, 4. , 1. ],
           [6.1, 2.9, 4.7, 1.4],
           [5.6, 2.9, 3.6, 1.3],
           [6.7, 3.1, 4.4, 1.4],
           [5.6, 3. , 4.5, 1.5],
           [5.8, 2.7, 4.1, 1. ],
           [6.2, 2.2, 4.5, 1.5],
           [5.6, 2.5, 3.9, 1.1],
           [5.9, 3.2, 4.8, 1.8],
           [6.1, 2.8, 4. , 1.3],
           [6.3, 2.5, 4.9, 1.5],
           [6.1, 2.8, 4.7, 1.2],
           [6.4, 2.9, 4.3, 1.3],
           [6.6, 3. , 4.4, 1.4],
           [6.8, 2.8, 4.8, 1.4],
           [6.7, 3. , 5. , 1.7],
           [6. , 2.9, 4.5, 1.5],
           [5.7, 2.6, 3.5, 1. ],
           [5.5, 2.4, 3.8, 1.1],
           [5.5, 2.4, 3.7, 1. ],
           [5.8, 2.7, 3.9, 1.2],
           [6. , 2.7, 5.1, 1.6],
           [5.4, 3. , 4.5, 1.5],
           [6. , 3.4, 4.5, 1.6],
           [6.7, 3.1, 4.7, 1.5],
           [6.3, 2.3, 4.4, 1.3],
           [5.6, 3. , 4.1, 1.3],
           [5.5, 2.5, 4. , 1.3],
           [5.5, 2.6, 4.4, 1.2],
           [6.1, 3. , 4.6, 1.4],
           [5.8, 2.6, 4. , 1.2],
           [5. , 2.3, 3.3, 1. ],
           [5.6, 2.7, 4.2, 1.3],
           [5.7, 3. , 4.2, 1.2],
           [5.7, 2.9, 4.2, 1.3],
           [6.2, 2.9, 4.3, 1.3],
           [5.1, 2.5, 3. , 1.1],
           [5.7, 2.8, 4.1, 1.3],
           [6.3, 3.3, 6. , 2.5],
           [5.8, 2.7, 5.1, 1.9],
           [7.1, 3. , 5.9, 2.1],
           [6.3, 2.9, 5.6, 1.8],
           [6.5, 3. , 5.8, 2.2],
           [7.6, 3. , 6.6, 2.1],
           [4.9, 2.5, 4.5, 1.7],
           [7.3, 2.9, 6.3, 1.8],
           [6.7, 2.5, 5.8, 1.8],
           [7.2, 3.6, 6.1, 2.5],
           [6.5, 3.2, 5.1, 2. ],
           [6.4, 2.7, 5.3, 1.9],
           [6.8, 3. , 5.5, 2.1],
           [5.7, 2.5, 5. , 2. ],
           [5.8, 2.8, 5.1, 2.4],
           [6.4, 3.2, 5.3, 2.3],
           [6.5, 3. , 5.5, 1.8],
           [7.7, 3.8, 6.7, 2.2],
           [7.7, 2.6, 6.9, 2.3],
           [6. , 2.2, 5. , 1.5],
           [6.9, 3.2, 5.7, 2.3],
           [5.6, 2.8, 4.9, 2. ],
           [7.7, 2.8, 6.7, 2. ],
           [6.3, 2.7, 4.9, 1.8],
           [6.7, 3.3, 5.7, 2.1],
           [7.2, 3.2, 6. , 1.8],
           [6.2, 2.8, 4.8, 1.8],
           [6.1, 3. , 4.9, 1.8],
           [6.4, 2.8, 5.6, 2.1],
           [7.2, 3. , 5.8, 1.6],
           [7.4, 2.8, 6.1, 1.9],
           [7.9, 3.8, 6.4, 2. ],
           [6.4, 2.8, 5.6, 2.2],
           [6.3, 2.8, 5.1, 1.5],
           [6.1, 2.6, 5.6, 1.4],
           [7.7, 3. , 6.1, 2.3],
           [6.3, 3.4, 5.6, 2.4],
           [6.4, 3.1, 5.5, 1.8],
           [6. , 3. , 4.8, 1.8],
           [6.9, 3.1, 5.4, 2.1],
           [6.7, 3.1, 5.6, 2.4],
           [6.9, 3.1, 5.1, 2.3],
           [5.8, 2.7, 5.1, 1.9],
           [6.8, 3.2, 5.9, 2.3],
           [6.7, 3.3, 5.7, 2.5],
           [6.7, 3. , 5.2, 2.3],
           [6.3, 2.5, 5. , 1.9],
           [6.5, 3. , 5.2, 2. ],
           [6.2, 3.4, 5.4, 2.3],
           [5.9, 3. , 5.1, 1.8]]),
    array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]))
# 使用决策树训练
clf=tree.DecisionTreeClassifier(max_depth=3)
clf.fit(X,Y)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
#这里预测当前输入的值的所属分类
print('target: ', [clf.predict([[12,1,-1,10]])[0]])
print('类别是: ',iris_target_name[clf.predict([[12,1,-1,10]])[0]])
target:  [0]
类别是:  target_name

无监督学习-Kmeans

程序设计

# 使用无监督聚类 k-means 试试
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import KMeans
from sklearn import datasets
np.random.seed(5)
centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target
estimators = {'k_means_iris_3': KMeans(n_clusters=3),
              'k_means_iris_8': KMeans(n_clusters=8),
              'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1,
                                              init='random')}
fignum = 1
for name, est in estimators.items():
    fig = plt.figure(fignum, figsize=(4, 3))
    plt.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
    plt.cla()
    est.fit(X)
    labels = est.labels_
    ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float))
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    ax.set_xlabel('Petal width')
    ax.set_ylabel('Sepal length')
    ax.set_zlabel('Petal length')
    fignum = fignum + 1
# Plot the ground truth
fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
plt.cla()
for name, label in [('Setosa', 0),
                    ('Versicolour', 1),
                    ('Virginica', 2)]:
    ax.text3D(X[y == label, 3].mean(),
              X[y == label, 0].mean() + 1.5,
              X[y == label, 2].mean(), name,
              horizontalalignment='center',
              bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
plt.show()

程序分析

这段代码实现了利用KMeans算法对鸢尾花数据集进行聚类,并使用3D图像可视化聚类结果和真实分类结果的比较。代码主要分为以下几个部分:

  1. 导入必要的库和数据集:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import KMeans
from sklearn import datasets
np.random.seed(5)
centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target
  1. 定义三个不同的KMeans模型,并对数据集进行拟合:
estimators = {'k_means_iris_3': KMeans(n_clusters=3),
              'k_means_iris_8': KMeans(n_clusters=8),
              'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1,
                                              init='random')}
for name, est in estimators.items():
    est.fit(X)
    labels = est.labels_
  1. 使用3D图像可视化聚类结果:
fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
plt.cla()
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float))
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
fignum = fignum + 1
  1. 使用3D图像可视化真实分类结果:
fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
plt.cla()
for name, label in [('Setosa', 0),
                    ('Versicolour', 1),
                    ('Virginica', 2)]:
    ax.text3D(X[y == label, 3].mean(),
              X[y == label, 0].mean() + 1.5,
              X[y == label, 2].mean(), name,
              horizontalalignment='center',
              bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')

在以上代码中,我们可以看到用三种不同的KMeans模型进行聚类,其中模型1和模型3都是三个聚类中心,而模型2是八个聚类中心。我们可以通过比较不同模型的聚类结果,来判断不同聚类中心数量对聚类结果的影响。


在3D图像中,每个数据点的坐标值为鸢尾花的四个特征值,x轴对应花瓣宽度,y轴对应花萼长度,z轴对应花瓣长度。通过颜色来表示不同的聚类结果。我们可以看到,不同聚类中心数量的模型分别将数据集聚为了不同数量的簇。同时,我们也可以通过比较聚类结果和真实分类结果的图像来评估聚类的效果。


总的来说,这段代码实现了对鸢尾花数据集进行聚类,并通过可视化手段来呈现聚类结果和真实分类结果之间的差异。


目录
相关文章
|
19天前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集
**YOLOv2算法在MATLAB2022a中实现人脸检测:** 展示6个检测结果图,利用Darknet-19进行特征提取,网络每个网格预测BBox,包含中心偏移、尺寸、置信度和类别概率。多任务损失函数结合定位、置信度和分类误差。程序加载预训练模型,遍历图像,对检测到的人脸以0.15阈值画出边界框并显示。
|
19天前
|
机器学习/深度学习 人工智能 物联网
深度学习在时间序列预测的总结和未来方向分析
2023年是大语言模型和稳定扩散的一年,时间序列领域虽然没有那么大的成就,但是却有缓慢而稳定的进展。Neurips、ICML和AAAI等会议都有transformer 结构(BasisFormer、Crossformer、Inverted transformer和Patch transformer)的改进,还出现了将数值时间序列数据与文本和图像合成的新体系结构(CrossVIVIT), 也出现了直接应用于时间序列的可能性的LLM,以及新形式的时间序列正则化/规范化技术(san)。
92 1
|
19天前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
19天前
|
机器学习/深度学习 数据可视化 测试技术
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
|
19天前
|
机器学习/深度学习 并行计算 算法
R语言深度学习不同模型对比分析案例
R语言深度学习不同模型对比分析案例
|
19天前
|
机器学习/深度学习 人工智能 分布式计算
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
|
19天前
|
机器学习/深度学习 数据采集 算法
Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据
Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据
|
19天前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】MNIST手写数字数据集的分类识别
【深度学习】MNIST手写数字数据集的分类识别
|
19天前
|
机器学习/深度学习 编解码 运维
深度学习数据集合(交通标志/火焰/手写字符/道路裂缝数据集)
深度学习数据集合(交通标志/火焰/手写字符/道路裂缝数据集)
53 0
|
19天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)
【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)
238 1