数值分析算法 MATLAB 实践 常微分方程求解

简介: 数值分析算法 MATLAB 实践 常微分方程求解

数值分析算法 MATLAB 实践 常微分方程求解

Euler 法及改进算法

function [x,y] = euler(fun,a,b,h,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% f是带求函数的一阶导形式
% a,b分别是自变量取值上下限
% y0 是初始条件y(0)
% h是步长
    s = (b - a) / h; % 求步数
    X = zeros(1, s+1);
    Y = zeros(1, s+1);
    X = a:h:b;
    Y(1) = y0;
    for k = 1:s
        Y(k+1) = Y(k) + h * fun(X(k), Y(k))
    end
    x = X';
    y = Y';
end
%% euler求解微分方程
% dfun1 = y^2-y^3;
 [x, y] = euler(@dfun1, 0,5,0.01,0.1);
% dfun1 = y;
% [x, y] = euler(@dfun1, 0,1,0.1,1);
figure
plot(x, y);
title('显示欧拉格式');

%% 微分方程
function dfun1 = dfun1(t,y)
    dfun1 = y^2-y^3;
    %dfun1 = y;
end
function[x,y]=imp_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    % 显式 Euler 作为初始值迭代计算
    yi_0 =  y(i-1) + h_step * func(x(i-1), y(i-1));
    yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    while abs(yi_1 - yi_0) > 1e-6
        yi_0 = yi_1;
        yi_1 = y(i - 1) + h_step * func(x(i), yi_0);
    end
    y(i) = yi_1;
end
function[x,y]=improve_euler(func,a_start,b_end,h_step,y0)
%一阶常微分方程的一般表达式的右端函数:fun
% 显示欧拉格式
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    yp = y(i-1) + h_step * func(x(i-1), y(i-1));
    yq = y(i-1) + h_step * func(x(i), yp);
    y(i) = 0.5 * (yp + yq);
end

Runge-Kutta 算法

4阶-单变量龙格库塔公式

rk45
rk45

4阶-多变量龙格库塔公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

% 单变量龙格库塔Runge_kutta 经典法
%一阶常微分方程的一般表达式的右端函数:func
% func是带求函数的一阶导形式
% a_start,b_end分别是自变量取值上下限
% y0是初始条件y(0)
% h_step是步长
function[x,y]=Runge_kutta(func,a_start,b_end,h_step,y0)
x = a_start : h_step : b_end;
N = length(x);
y = zeros(1, N);
y(1) = y0;
for i = 2:N
    k1 = func(x(i-1), y(i-1));
    k2 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k1);
    k3 = func(x(i-1) + h_step/2, y(i-1) + h_step/2*k2);
    k4 = func(x(i-1) + h_step, y(i-1) + h_step*k3);
    y(i) = y(i-1) + h_step/6*(k1 + 2*k2 + 2*k3 + k4);
end
function[x,y]=Runge_kutta45(dyfunc,xspan,y0,h_step)
% 多变量龙格库塔Runge_kutta45
% h_step是步长常选取为0.01;
% ufunc是函数名;
% x0是初始时间值;
% y0是初始化值; 
% n 是迭代步数;
      x = xspan(1):h_step:xspan(2);
      y = zeros(length(y0),length(x));
      y(:,1) = y0(:);
      %循环迭代数值求解部分
     for n=1 : (length(x)-1)
          k1=feval(dyfunc, x(n),y(:,n));
          k2=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k1);
          k3=feval(dyfunc, x(n)+h_step/2,y(:,n)+h_step/2*k2);
          k4=feval(dyfunc, x(n+1),y(:,n)+h_step*k3);
          y(:,n+1)=y(:,n)+h_step*(k1+2*k2+2*k3+k4)/6; 
          %按照4阶多变量龙格库塔方法进行数值求解
     end
end
clc;
clear all;
y0=[0,2,9];%初值
xspan = [0,200];%求解区间
h_step = 0.001;%ode45是变步长的算法
[x,y] = Runge_kutta45(@lorenz_diff,xspan,y0,h_step);
figure(1);
plot3(y(1,:),y(2,:),y(3,:),'.');title("x-y-z");
figure(2);
plot3(y(1,:),y(3,:),y(2,:),'.');title("x-z-y");
figure(3);
plot3(y(2,:),y(1,:),y(3,:),'.');title("y-x-z");
function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Matlab 函数库求解

[t, Xt] = ode45(odefun, tspan, X0)
odefun是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名
tspan是区间 [t0 tfinal] 或者一系列散点[t0,t1,…,tf]
X0是初始值向量
t返回列向量的时间点
Xt返回对应T的求解列向量

Lorenz系统
在这里插入图片描述

function dydt = lorenz_diff(t,y)
%{
    x-->y(1),y-->y(2),z-->y(3)
%}
dydt = [        10*(y(2)-y(1));
             -y(1)*y(3)+30*y(1)-y(2)
              y(1)*y(2)-8/3*y(3)];  
end
clc;
y0 = [0,2,9];
[t,y] = ode45('lorenz_diff',[0,200],y0); 
%% 调用ode45绘制Lorenz系统 2D
figure(1);
plot(y(:,1),y(:,3),'.');
xlabel('x');ylabel('z');title("x-z");
figure(2);
plot(y(:,1),y(:,2),'.');
xlabel('x');ylabel('y');title("x-y");
figure(3);
plot(y(:,2),y(:,3),'.');
ylabel('y');zlabel('z');title("y-z");

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

%% 火焰传播数学模型求解
clc;
clear all;
delta=0.01;
f=@(t,y)y^2-y^3;
opts=odeset('Reltol',1.e-4);
[t1,y1]=ode45(f,[0  2/delta], delta, opts);
figure(1)
plot(t1,y1,'-','Marker','.');
title('数值解曲线');
ylabel('y'); xlabel('t');

在这里插入图片描述

目录
相关文章
|
2天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
4天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
7天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
10天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
22 2
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
4天前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
10 0
|
7天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
12天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。

热门文章

最新文章