【储能优化】基于ylimp和cvx实现光风负荷储能微电网储能配置优化附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【储能优化】基于ylimp和cvx实现光风负荷储能微电网储能配置优化附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

1 算法原理

在光风负荷储能微电网的储能配置优化中,可以使用ylimp和cvx这两个工具进行实现。

  1. ylimp(Yearly Load Incremental Modeling Program)是一种用于分析年度电力系统运行的开源工具。它可以帮助您建立、模拟和优化电力系统,并进行储能配置方面的分析。可以使用ylimp来考虑光能和风能的年度波动性,并基于负荷需求和可再生能源供应的特点来设计最佳的储能方案。
  2. cvx(Convex Optimization)是一个用于凸优化问题求解的软件包,可用于处理各种数学模型和约束条件。在光风负荷储能微电网的储能配置优化中,可以使用cvx来构建和求解优化模型,以确定如何分配和管理储能设备的容量和功率。借助cvx,可以考虑不同的优化目标,例如最小化成本、最大化可靠性或最小化碳排放等,在满足微电网的需求和约束条件的前提下找到最优的储能配置方案。

通过结合ylimp和cvx,可以综合考虑光、风能、负荷需求和储能设备的特性,实现光风负荷储能微电网的储能配置优化。其中,ylimp用于建模和模拟电力系统,而cvx用于解决优化问题。

⛄ 部分代码

clc

clear

close all

warning off

tic

%% 开始运行

%先运行一次,得到UB-LB

[yita,LB,ee_bat_int, p_wt_int,p_pv_int,p_g_int] = MP;

[p_wt,p_pv,p_load,x,UB] = SP(ee_bat_int,p_wt_int,p_pv_int,p_g_int,LB,yita);

UB1 = UB;

p(1)= UB - LB;

pub(1)=0;

plb(1)=0;

%开始迭代

for k=1:10

   [yita,LB,ee_bat_int,p_wt_int,p_pv_int,p_g_int] = MP2(p_wt,p_pv,p_load);%MP迭代

   [p_wt,p_pv,p_load,x,UB] = SP(ee_bat_int,p_wt_int,p_pv_int,p_g_int,LB,yita);%SP迭代

   UB = min(UB1,UB);%取UB较小值

   pub(k+1)=UB;

   plb(k+1)=LB;

   p(k+1) = UB-LB;

end

toc

%%绘图版块:主要绘制了各微网的日运行计划,容量配置结果,迭代过程等等

figure(1)

plot(x(1:24),'-*')

xlim([1 24])

grid

hold on

plot(x(25:48),'-*')

bar(x(49:72))

plot(x(73:96),'-d')

plot(x(97:120),'-d')

title('典型日1场景下微网运行计划')

legend('购电功率','售电功率 ','燃气轮机功率','储能充电','储能放电')

xlabel('时间')

ylabel('功率')

⛄ 运行结果

⛄ 参考文献

[1] 周莉.微电网混合储能系统功率优化分配与容量配置方法研究[D].东南大学,2014.DOI:10.7666/d.Y2708616.

[2] 陈旭海,陈佳桥,叶春,等.基于ANN锂电池混合储能系统容量优化配置[J].供用电, 2019, 36(10):7.DOI:CNKI:SUN:GYDI.0.2019-10-015.

[3] 朱向芬.基于粒子群算法的混合储能系统容量优化配置[D].宁夏大学[2023-06-17].

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
162 73
|
1月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
5月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
105 6
|
6月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
184 4
|
5月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
54 0
|
6月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章