Yolov5-6.2 正式发布 | Yolov5 也可以训练分类模型啦,语义分割+实例分割很快到来

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Yolov5-6.2 正式发布 | Yolov5 也可以训练分类模型啦,语义分割+实例分割很快到来

7fdccfc482a1e9c991747eb2af1acf99.png

yolov5-6.2增加了分类训练、验证、预测和导出(所有 11 种格式),还提供了 ImageNet 预训练的 YOLOv5m-cls、ResNet(18、34、50、101) 和 EfficientNet (b0-b3) 模型。

此次发布的主要目标是引入超级简单的 YOLOv5 分类工作流程,就像现有的目标检测模型一样。以下新的 v6.2 YOLOv5-cls 模型只是一个开始,作者将继续与现有的检测模型一起改进这些模型。

下一个版本 v6.3 计划于 9 月发布,将为 YOLOv5 带来官方实例分割支持,今年晚些时候将发布一个主要的 v7.0 版本,更新所有 3 个任务的架构——分类、检测和分割。

1、重要更新

分类模型:TensorFlow、Keras、TFLite、TF.js 模型导出现在使用 python export.py --include saved_model pb tflite tfjs 完全集成。

ClearML日志记录:与开源实验跟踪器 ClearML 集成。使用 pip install clearml 安装将启用集成并允许用户跟踪在 ClearML 中运行的每个训练。这反过来又允许用户跟踪和比较运行,甚至远程安排运行。

Deci.ai优化:一键自动编译和量化 YOLOv5 以获得更好的推理性能。

GPU导出基准:使用 python utils/benchmarks.py --weights yolov5s.pt --device 0 用于 GPU 基准测试或 --device cpu 用于 CPU 基准测试,对所有 YOLOv5 导出格式进行基准测试(mAP 和速度)。

训练可再现性:使用 torch>=1.12.0 的单 GPU YOLOv5 训练现在完全可再现,并且可以使用新的 --seed 参数(默认种子 = 0)。

Apple Metal Performance Shader (MPS) 支持:通过 --device mps 对 Apple M1/M2 设备的 MPS 支持(完整功能在 pytorch/pytorch#77764 中等待更新)。

2、分类模型与精度

使用 4×A100 在 ImageNet 上训练了 YOLOv5-cls 分类模型 90 个 epoch,并且训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置进行比较。将所有模型导出到 ONNX FP32 进行 CPU 速度测试,并将所有模型导出到 TensorRT FP16 进行 GPU 速度测试。在 Google Colab Pro 上进行了所有速度测试,以便轻松重现。

3ab8c2a005092c891d4a0efd74d9c03e.png

cdea429f56793621cdd2f38204fc3a5e.png

3、使用

YOLOv5 分类训练支持使用 --data 参数自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集。例如,要开始在 MNIST 上进行训练,使用 --data mnist。

train

# Single-GPU
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
# Multi-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3

val

bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate

test

python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg

4、构建形式

分类模型的构建依旧是YOLOv5的风格,加入了分类的head,这里点赞,不怕没有预训练权重了!

class ClassificationModel(BaseModel):
    # YOLOv5 classification model
    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):  # yaml, model, number of classes, cutoff index
        super().__init__()
        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
    def _from_detection_model(self, model, nc=1000, cutoff=10):
        # Create a YOLOv5 classification model from a YOLOv5 detection model
        if isinstance(model, DetectMultiBackend):
            model = model.model  # unwrap DetectMultiBackend
        model.model = model.model[:cutoff]  # backbone
        m = model.model[-1]  # last layer
        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
        c = Classify(ch, nc)  # Classify()
        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
        model.model[-1] = c  # replace
        self.model = model.model
        self.stride = model.stride
        self.save = []
        self.nc = nc
    def _from_yaml(self, cfg):
        # Create a YOLOv5 classification model from a *.yaml file
        self.model = None

参考

https://github.com/ultralytics/yolov5/releases

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
机器学习/深度学习 算法 固态存储
最强DETR+YOLO | 三阶段的端到端目标检测器的DEYOv2正式来啦,性能炸裂!!!
最强DETR+YOLO | 三阶段的端到端目标检测器的DEYOv2正式来啦,性能炸裂!!!
267 0
|
8月前
|
机器学习/深度学习 JSON 算法
如何在自定义数据集上训练 YOLOv8 实例分割模型
在本文中,我们将介绍微调 YOLOv8-seg 预训练模型的过程,以提高其在特定目标类别上的准确性。Ikomia API简化了计算机视觉工作流的开发过程,允许轻松尝试不同的参数以达到最佳结果。
|
数据处理 计算机视觉 Python
【目标检测】指定划分COCO数据集训练(车类,行人类,狗类...)
【目标检测】指定划分COCO数据集训练(车类,行人类,狗类...)
3903 0
|
3月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
419 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
7月前
|
机器学习/深度学习 人工智能
可解释性研究新突破:OpenAI成功训练1600万个特征的自动编码器
【6月更文挑战第13天】OpenAI团队在可解释性研究上取得进展,训练出拥有1600万特征的自动编码器来解析GPT-4。此模型旨在揭示语言模型的工作原理,提高AI透明度。自动编码器从低维度特征空间重建输入数据,研究通过稀疏特征增强可解释性。虽然规模扩大带来解释性提升,但计算资源需求大,且评估指标的全面性仍受质疑。[论文链接](https://cdn.openai.com/papers/sparse-autoencoders.pdf)
85 1
|
8月前
|
XML 机器学习/深度学习 算法
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
209 1
|
8月前
|
机器学习/深度学习 算法 数据可视化
YOLO+混合注意力机制 | YOLOv5再加4.3%才可以做对手,Transformer混合设计依旧可以卷
YOLO+混合注意力机制 | YOLOv5再加4.3%才可以做对手,Transformer混合设计依旧可以卷
234 0
|
编解码 算法 数据可视化
一种联合分类与检测训练的方法——YOLO9000
一种联合分类与检测训练的方法——YOLO9000
255 0
一种联合分类与检测训练的方法——YOLO9000
|
机器学习/深度学习 数据可视化
DHVT:在小数据集上降低VIT与卷积神经网络之间差距,解决从零开始训练的问题
VIT在归纳偏置方面存在空间相关性和信道表示的多样性两大缺陷。所以论文提出了动态混合视觉变压器(DHVT)来增强这两种感应偏差。
266 0
|
机器学习/深度学习 自动驾驶
使用迭代方法为语义分割网络生成对抗性
使用迭代方法为语义分割网络生成对抗性。
124 0

热门文章

最新文章