本地部署的qwen3-8b模型和百炼上的qwen3-8b模型效果不一致
我在使用Function Call时发现,百炼平台上的Qwen3-8B模型与本地部署的Qwen3-8B模型效果存在差异,主要体现在函数参数生成上,本地模型常出现漏参或JSON格式错误,而百炼模型表现正常。想确认百炼平台的Qwen3-8B是否为更高版本?
智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果
LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。
通义灵码深度测评报告
通义灵码是阿里云推出的智能编程平台,基于Qwen3大模型与MCP服务生态,重新定义现代软件开发范式。本文测评聚焦其四大核心功能:编程智能体(自主决策开发)、MCP工具生态(加速开发流程)、记忆感知(个性化体验)及深度开发能力(智能推荐与解释)。实测数据显示,相比传统开发,效率显著提升,如API开发提速300%。展望应用场景包括低代码开发、DevOps自动化及教育领域等。总结建议增强多语言支持、优化复杂逻辑并建立开发者社区知识库。
建模世界偏好:偏好建模中的Scaling Laws
本文探讨了人类偏好建模的可扩展性,揭示其遵循Scaling Law。通过大规模训练(1.5B-72B参数)Qwen 2.5模型,使用1500万对论坛偏好数据,发现测试损失随规模指数增长而线性下降。研究提出WorldPM(Modeling World Preference),作为统一的人类偏好表征方法,在客观与主观评估中展现优势。实验表明,WorldPM可显著提升样本效率和多维度性能,成为高效的人类偏好微调基座。同时,文章反思主观评估复杂性,建议放弃简单预设,让模型自主发现人类偏好的深层规律,推动AI对齐新方向。论文与代码已开源。
ParScale:一种全新的大模型Scaling Law
ParScale是一种新的模型扩展路线,通过并行计算增强模型能力,无需增加参数量。它引入多个并行流处理输入,动态聚合输出,显著提升性能,尤其在数学和编程任务中表现突出。相比传统方法,ParScale仅增加1/22的内存和1/6的延迟,适合边缘设备。研究还提出两阶段训练策略,降低训练成本。未来将探索更多模型架构和大数据场景下的应用潜力。
解锁 Qwen3 的Agent能力,CookBook来咯!
Qwen3系列模型具备强大Agent能力,但从模型到Agent仍存技术难题。为此,我们推出基于Qwen-Agent框架的3个CookBook示例,展示如何让Qwen3丝滑调用MCP Server全过程。不论是本地部署还是API调用模型,开发者均可通过Qwen-Agent完成复杂任务。CookBook包括自然语言驱动数据库操作、云端高德API地理服务及文档转思维导图等功能。Qwen-Agent封装了工具调用模板和解析器,原生支持MCP协议,大幅降低开发成本。欢迎体验并反馈。
比亚迪座舱接入通义大模型,未来将联合打造更多AI智能座舱场景
比亚迪与阿里云深度合作,将通义大模型应用于智能座舱和营销服务。通过通义万相,腾势推出“AI壁纸”功能;借助通义星尘,实现“心理伴聊”等情感陪伴场景。阿里云Mobile-Agent智能体落地比亚迪座舱,支持复杂语音操作,如查询淘宝物流、订火车票等。该方案基于全视觉解决技术,具有强泛化能力,未来双方将持续拓展更多AI应用。
AiPy:国内版开源版Manus助力高考梦校情况了解
高考后择校如同相亲,需深入了解学校是否契合个人发展。本文以四川大学为例,通过AiPy助手生成可爱风格的详细介绍,涵盖地理位置、食宿环境、校园与学术氛围,以及周末旅游攻略。从望江校区的古朴到江安校区的现代化,再到周边春熙路、锦里等景点推荐,内容详实生动。虽然学术条件部分略简略,但仍为考生提供全面参考,助力做出明智选择!
Qwen3技术报告首次全公开!“混合推理模型”是这样炼成的
近日,通义千问Qwen3系列模型已开源,其技术报告也正式发布。Qwen3系列包含密集模型和混合专家(MoE)模型,参数规模从0.6B到235B不等。该模型引入了“思考模式”与“非思考模式”的动态切换机制,并采用思考预算机制优化推理性能。Qwen3支持119种语言及方言,较前代显著提升多语言能力,在多个基准测试中表现领先。此外,通过强到弱蒸馏技术,轻量级模型性能优异,且计算资源需求更低。所有Qwen3模型均采用Apache 2.0协议开源,便于社区开发与应用。
恶意软件无处逃!国内版“Manus”AiPy开发Windows沙箱工具,进程行为+网络传输层级监控! 头像 豪气的
NImplant.exe 是一款后渗透测试工具,可实现远程管理与持久化控制。其优点包括无文件技术、加密通信和插件扩展,但也存在被检测风险及配置复杂等问题。为深入分析其行为,我们基于 aipy 开发了 Windows 沙箱工具,针对桌面上的 NImplant.exe 进行多维度分析,涵盖进程行为、网络连接(如 TCP 请求、目标 IP/域名)、文件控制等,并生成传输层监控报告与沙箱截图。结果显示,aipy 工具响应迅速,报告清晰易读,满足分析需求。
AI企业必看:最新结果标识合规要求及规范
随着《人工智能生成合成内容标识办法》及配套标准的发布,AI企业需快速掌握政策要求以确保合规运营。该办法明确指出,利用AI生成的内容(如文本、图片、音频、视频等)需通过显性标识(如“AI生成”字样)或隐性标识(如元数据、数字水印)进行标注。内容传播平台也需核验标识并提醒用户内容性质。此外,应用程序分发平台在审核时需确认是否提供AI生成服务及相关标识材料。对于AI企业而言,合规已成为必修课,需重点关注标识的规范性和溯源能力,以应对即将到来的监管要求。
通义万相首尾帧图模型一键生成特效视频!
本文介绍了阿里通义发布的Wan2.1系列模型及其首尾帧生视频功能。该模型采用先进的DiT架构,通过高效的VAE模型降低运算成本,同时利用Full Attention机制确保生成视频的时间与空间一致性。模型训练分为三个阶段,逐步优化首尾帧生成能力及细节复刻效果。此外,文章展示了具体案例,并详细说明了训练和推理优化方法。目前,该模型已开源。
通义OmniAudio大模型,让 AI 看懂 360° 视频,并“听”出对应的空间音频
OmniAudio 是一项突破性的空间音频生成技术,能够直接从 360° 视频生成 FOA(First-order Ambisonics)空间音频,为虚拟现实和沉浸式娱乐带来全新可能。通过自监督 coarse-to-fine 预训练和双分支视频表示微调,OmniAudio 在非空间音频质量和空间定位准确性上显著优于现有方法。项目包含超过 103,000 个视频片段的 Sphere360 数据集,支持高质量的模型训练与评估。代码、数据及论文均已开源,助力沉浸式体验技术发展。
Spark-TTS: AI语音合成的"变声大师"
Spark-TTS 是一款革命性的语音合成模型,被誉为“变声大师”。它通过创新的 BiCodec 技术将语音分解为语义和全局两种 Token,实现对音色、性别、语速等属性的精细控制。结合统一的 LLM 架构,Spark-TTS 简化了传统 TTS 的复杂流程,同时提供了前所未有的灵活性。此外,团队还发布了 VoxBox 开源数据集,为行业提供标准评估基准。尽管在零样本场景下仍存改进空间,但 Spark-TTS 已经开启了语音合成新时代,让个性化、可控的 AI 语音成为可能。

颠覆开发效率!国内首个微服务编排框架Juggle开源啦!
Juggle是国内首个开源的微服务编排框架,专注于解决企业微服务进程中接口重复开发、系统对接复杂等问题。它提供零代码、低代码和AI增强功能,通过可视化拖拽快速组装简单API为复杂接口,支持多协议、多语言脚本和流程多版本管理。相比国外框架如Conductor,Juggle更贴合国内需求,具备高效开发、企业级可靠性及信创适配等优势,助力企业实现敏捷创新与数字化转型。

向量数据库和嵌入模型
本文介绍了向量数据库和嵌入模型的概念及应用,重点探讨了两者在AI技术栈中的协作关系。向量数据库是一种用于存储高维向量数据的解决方案,支持相似性搜索而非传统的关系型数据库精确匹配。文中通过实例展示了如何使用阿里百炼的文本嵌入模型(text-embedding-v3)将文本向量化,并结合Qdrant向量数据库进行存储与检索。代码示例部分详细说明了从文本嵌入到向量存储及查询的完整流程,为开发者提供了实践参考。
Aipy实战:分析潜在的糖尿病患者
Aipy是一款本地部署、隐私性强的垂直型Agent,结合LLM与Python能力,可操控局域网设备、调用任意模型且成本低廉。本文介绍其通过分析“训练数据集.csv”学习糖尿病特征,判断“病人数据集.csv”中的潜在患者,并标记风险。过程中,Aipy快速拆解任务,在表格中新增“糖尿病风险”和“概率”列,以0/1直观展示结果,最终生成预测文件,整个流程仅耗时5分钟,高效且实用。
深度合成算法备案全知道:不同角色审核的重点是什么?
深度合成技术正深刻改变生活,其算法备案对保障技术安全至关重要。目前已有3445款算法通过备案,其中服务提供者占76.78%。本文详解服务提供者与技术支持者的角色差异、审核重点及文件要求,强调两者不可混用且需独立备案。只有严格遵循备案流程,才能让深度合成技术真正造福大众,推动行业健康发展。
Arthas heapdump(dump java heap, 类似 jmap 命令的 heap dump 功能)
Arthas heapdump(dump java heap, 类似 jmap 命令的 heap dump 功能)
算法及模型合规:刻不容缓的企业行动指南
随着AI技术迅猛发展,算法与模型成为企业数字化转型的核心。然而,国家密集出台多项法规,如《人工智能生成合成内容标识办法》等,并开展“清朗·整治AI技术滥用”专项行动,标志着AI监管进入严格阶段。算法备案从“可选项”变为“必选项”,未合规可能面临罚款甚至刑事责任。同时,多地提供备案奖励政策,合规既是规避风险的需要,也是把握政策红利和市场信任的机遇。企业需系统规划合规工作,从被动应对转向主动引领,以适应AI时代的挑战与机遇。
aipy实战:建设PE文件查杀神器,阻止Windows EXE木马!
本工具为小型木马静态特征查杀工具,专用于检测Windows下的EXE文件是否为可疑木马。核心功能包括:扫描恶意字符串(如keylogger、powershell)、检查熵值异常以判断加密/加壳、揪出可疑API组合(如注册表篡改、网络通信链)以及解析PE头分析编译环境与加壳痕迹。通过提示词实现功能开发,并保存为`aipy_kill_rat.py`文件。测试结果显示,工具成功扫描出426个可疑字符串、超高熵值及恶意API组合,确认目标文件为恶意木马。该工具轻量灵活,适合样本初筛与应急响应,是静态分析的高效利器。
aipy实战:Deepseek-V3、Hunyuan&Qwen分析618平板攻略
Aipy是一款结合LLM与Python的智能工具,用户通过简单指令即可让LLM分析并生成代码,实时解决问题。本次v0.1.28版本新增联网搜索、案例分享等功能,并引入混元和Qwen模型。测评中,三个模型完成“618平板选购攻略”任务表现各异:deepseek-v3界面精美、信息全面但价格有偏差;hunyuan-turbos-latest信息不全但界面简洁;qwen-plus-latest推荐合理但数据失真。总体而言,Aipy在操作友好性和分析界面上显著提升,适合解决实际问题。
qwen3大模型目前的不足与功能建议
这段内容反映了用户在过去半个多月与Qwen3大模型在线服务互动后,发现的功能不足及对未来功能的建议。用户已将所有意见汇总至一个会话,并通过www.tongyi.com页面分享对话链接。希望Qwen开发团队重视这些建议,同时也会发布到阿里云开发者社区讨论。待官方回复后,用户将根据回复决定是否分享给其他云服务厂商和开源社区。
通义千问推理模型QwQ-32B开源,更小尺寸、更强性能
阿里云发布并开源全新推理模型通义千问QwQ-32B,通过大规模强化学习,在数学、代码及通用能力上实现质的飞跃,性能比肩DeepSeek-R1。该模型大幅降低部署成本,支持消费级显卡本地部署,并集成智能体Agent相关能力。阿里云采用Apache2.0协议全球开源,用户可通过通义APP免费体验。此外,通义团队已开源200多款模型,覆盖全模态和全尺寸。
通义万相新模型开源,首尾帧图一键生成特效视频!
通义万相首尾帧生视频14B模型正式开源,作为首个百亿级参数规模的开源模型,可依据用户提供的开始与结束图片生成720p高清衔接视频,满足延时摄影、变身等定制化需求。用户上传两张图片或输入提示词即可完成复杂视频生成任务,支持运镜控制和特效变化。该模型基于Wan2.1架构改进,训练数据专门构建,确保高分辨率和流畅性。