大模型备案攻略—2025全网最新最详细解读版
随着AI技术的发展,大模型备案成为行业热点。本文详解备案所需具体条件与注意事项,涵盖模型功能、适用场景、研制情况、安全评估及备案材料等核心内容,帮助企业全面了解备案流程,规避合规风险,顺利推进产品上线。
告别无效调参!ReAct代理设计:让LLM精准执行复杂任务的终极方案
ReAct模式通过“推理+行动”循环,使大语言模型能自主调用工具、获取实时信息并执行多步骤任务,有效突破LLM固有局限,提升任务准确性和智能化水平。
深度解析基于LangGraph的Agent系统架构设计与工程实践
LangGraph作为Agent 生态中非常热门的框架,今天我将借助 LangGraph,更高效、更优雅的方式构建复杂智能体系统。
Qwen-MT:翻得快,译得巧
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
Chat、Agent和Workflow的思考
Chat、Agent 和 Workflow 各具特色,长期共存,满足不同层次的LLM应用需求。Chat 实现高效人机对话,适用于即时交互;Agent 强调自主执行任务,适合复杂推理与工具调用;Workflow 侧重流程标准化,适用于结构化场景。测试设计应根据不同类型定制方案,聚焦业务价值,而非泛化指标。可通过 A/B 测试、用户反馈和错误分析持续优化模型表现。
人工智能驱动的软件工程:测试左移的崛起价值
本文探讨了人工智能驱动下测试左移理念在软件工程中的重要性,分析测试工程师在需求评估、AI代码生成及遗留系统优化中的关键作用,揭示AI带来的挑战与机遇,并指出测试工程师需提升技能、关注合规与可维护性,以在AI时代保障软件质量。

FastRead——AI驱动的智能读写生产力引擎,重构信息处理与内容创作新范式
FastRead是一款智能内容处理工具,基于大模型技术,自动解析网页、文档、音频等多源内容,提取关键信息并生成多模态知识卡片。它重构信息处理流程,提升内容创作效率,适用于新闻、金融、教育、营销等多个场景,助力用户高效获取与输出知识。
# Qwen3-8B 的 TTFT 性能分析:16K 与 32K 输入 Prompt 的推算公式与底层原理详解
Qwen3-8B 是通义实验室推出的 80 亿参数大模型,支持最长 32,768 token 上下文,适用于长文本处理场景。通过 FP8 量化、CUDA Kernel 优化及 RoPE 位置编码技术,提升推理效率与稳定性。模型在 16K 输入下 TTFT 约 150-200ms,32K 输入下约 250-300ms,适用于文档摘要与长对话交互。
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。
# Qwen3-8B 与 ChatGPT-4o Mini 的 TTFT 性能对比与底层原理详解
Qwen3-8B 是通义实验室推出的80亿参数模型,支持32K上下文,采用FP8量化和CUDA优化,提升推理效率;ChatGPT-4o Mini 为OpenAI轻量模型,参数约3.8B,支持128K上下文,通过蒸馏技术实现低延迟。两者在TTFT、长文本处理和部署优化上各有优势,适用于不同应用场景。
HumanOmniV2 比你还懂“社交潜台词”!
如何让AI真正“读懂”人心?本文通过分析相亲对话案例,揭示当前多模态大模型在全局上下文理解和深度逻辑推理上的不足,并介绍全新模型HumanOmniV2的创新机制,如强制性上下文总结和多维度奖励机制,显著提升AI对人类复杂意图的理解能力。
WebSailor:探索 WebAgent的超人类推理能力
通义实验室推出WebSailor方案,通过创新的post-training方法显著提升开源模型在复杂网页推理任务中的表现。该方案包括合成高不确定性数据、多轮工具调用轨迹重构及强化学习算法DUPO应用,在多个评测中展现优越性能。
真·零门槛!原来手搓AI应用这么简单
这是一篇关于如何创作小红书爆款文案的专业指南,涵盖标题技巧、正文结构、情绪表达及关键词运用。内容包括高吸引力标题公式、正文六种开篇模板、关键词库和写作规则,帮助用户高效打造高转化文案。
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
设计稿一键变代码,VTJ.PRO 让想象与实现再无距离。
VTJ.PRO联合MasterGo推出智能设计识别引擎,助力设计师高效生成Vue组件代码,打通设计与开发协作壁垒,提升团队效率。限时领取百万AI额度,开启智能开发新时代!
1张照片 2秒钟 一键变身3D数字人
LHM是一种基于单视角图像的端到端Transformer模型,结合SMPL-X人体模型与高斯渲染技术,可从一张照片生成可驱动的3D数字人。它采用Vision Transformer和Mae模型提取特征,并通过Body-Head Transformer融合2D与3D信息,输出具有动作能力的高精度3D人体模型。应用于动作重现、游戏角色生成及虚拟现实等领域,代码已开源并提供在线体验入口。
通义首个音频生成模型 ThinkSound 开源,你的专业音效师
通义实验室推出首个音频生成模型ThinkSound,突破传统视频到音频生成技术局限,首次将思维链(CoT)应用于音频生成领域,实现高保真、强同步的空间音频生成。基于自研AudioCoT数据集,结合多模态大语言模型与统一音频生成模型,支持交互式编辑,显著提升音画匹配度与时序一致性。代码已开源,助力游戏、VR、AR等场景创新应用。

点我!1分钱获取你的专属表白网页,浪漫由大模型代运营
MCP 技术持续走红,应用场景不断拓展。近期支付功能上线,推动商业化落地。作者借助「百宝箱智能体平台」打造了一款名为「与你」的情侣互动助手,支持游玩攻略、牵手技巧、告白网页定制等功能,并结合 MCP 实现支付宝支付与网页部署,兼具实用性与仪式感,助力恋爱小白提升情感表达。
AI赋能教育与阿里云通义千问的结合
本简介介绍了AI技术如何赋能教育行业,结合阿里云“通义千问”大模型,助力海豚大数据及人工智能实验平台实现个性化教学、智能答疑与资源优化,推动高校与企业人才培养模式革新,构建终身学习生态体系。
📣通义大模型新成员Qwen-VLo,重磅上线,它实现了从“看懂”世界到“描绘”世界
通义千问团队推出全新多模态统一理解与生成模型Qwen VLo,具备强大的图像理解与生成能力。它不仅能“看懂”图像内容,还能基于理解进行高质量再创造,实现从感知到生成的跨越。支持开放指令编辑、多语言交互及复杂任务处理,适用于图像生成、风格迁移、检测标注等多种场景。
阿里云百炼产品月刊【2025年6月】
阿里云百炼平台6月推出多项更新与活动,涵盖Agent市场、多模态交互开发套件、新模型上线及商业化调整。新增100+开箱即用Agent模板,支持多行业多场景应用;推出通义多模态交互开发套件,提升全场景适配能力;联合支付宝推出Agent赞赏功能,助力创意变现;新上架text-embedding-v4、deepseek-r1-0528、qvq系列视觉推理模型等,并对qwen-plus、qwen-turbo等模型进行迭代升级。同时,部分历史模型将于7月下线,建议用户及时调整应用。更多详情请查看官网公告。
告别OOM!这款开源神器,如何为你精准预测AI模型显存?
在 AI 开发中,CUDA 显存不足常导致训练失败与资源浪费。Cloud Studio 推荐一款开源工具——AI 显存计算器,可精准预估模型训练与推理所需的显存,支持主流模型结构与优化器,助力开发者高效利用 GPU 资源。项目地址:github.com/st-lzh/vram-wuhrai
智能体(AI Agent)开发实战之【LangChain】(四)结合大模型基于RAG实现本地知识库问答和纠错
本文介绍如何基于RAG实现知识库问答系统的输入内容纠错功能。通过加载本地知识库、构建向量数据库,结合大语言模型对输入文本进行检索比对与纠错优化,提升问答准确性。
通义大模型千问3助力B站,在618期间,商单成交效率提升5倍+
B站接入通义千问Qwen3等模型打造智能体InsightAgent,提升商业平台“花火”和“必达”的效率。花火实现商单成交效率提升5倍以上,必达数据洞察效率提升3倍以上,推动分钟级投放决策。
[架构思考] 咱们写Prompt的姿势,是不是该换换了?
本文想聊聊现在 Prompt 工程里的“内卷”怪象,并扔出一个可能的新玩法。我会把现在主流的 Prompt 写法,跟咱们码农都懂的“过程式编程”做个类比,扒一扒它在搞复杂 Agent 时的局限。然后,我会介绍一种基于“状态驱动”的“涌现式 Prompt”思路,并用一个叫《自衍体》的开源项目当例子,拆解一下它的技术实现。目的很简单,就是给想搞高级 AI Agent 的兄弟们,提供一个新思路。
优化通义大模型推理性能:企业级场景下的延迟与成本削减策略
本文基于金融、电商、医疗等领域的实战经验,深入探讨通义千问等大模型的推理优化技术栈。从计算图优化、批处理策略、量化压缩到系统架构四个维度展开,结合Python代码示例与压力测试数据,提供企业级解决方案。针对延迟敏感、高吞吐及成本敏感场景,分析性能瓶颈并提出算子融合、动态批处理、混合精度量化等方法,同时设计分布式推理架构与冷启动优化策略。通过案例展示,如电商大促场景优化,实现峰值QPS提升6.5倍、P99延迟降低53%、月度成本下降62%。文章还提供优化实施路线图,助力企业分阶段落地技术方案。
通义大模型与现有企业系统集成实战《CRM案例分析与安全最佳实践》
本文档详细介绍了基于通义大模型的CRM系统集成架构设计与优化实践。涵盖混合部署架构演进(新增向量缓存、双通道同步)、性能基准测试对比、客户意图分析模块、商机预测系统等核心功能实现。同时,深入探讨了安全防护体系、三级缓存架构、请求批处理优化及故障处理机制,并展示了实时客户画像生成和动态提示词工程。通过实施,显著提升客服响应速度(425%)、商机识别准确率(37%)及客户满意度(15%)。最后,规划了技术演进路线图,从单点集成迈向自主优化阶段,推动业务效率与价值持续增长。
利用通义大模型构建个性化推荐系统——从数据预处理到实时API部署
本文详细介绍了基于通义大模型构建个性化推荐系统的全流程,涵盖数据预处理、模型微调、实时部署及效果优化。通过采用Qwen-72B结合LoRA技术,实现电商场景下CTR提升58%,GMV增长12.7%。文章分析了特征工程、多任务学习和性能调优的关键步骤,并探讨内存优化与蒸馏实践。最后总结了大模型在推荐系统中的适用场景与局限性,提出未来向MoE架构和因果推断方向演进的建议。
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
vLLM 部署 Qwen3
本文介绍了在特定环境下安装和使用 vLLM 的步骤。环境配置包括 CUDA 12.2、40GB 显存,使用 conda 进行 Python 包管理,并基于 Qwen3-8B 模型。首先通过创建 conda 环境并安装 vLLM 实现部署,接着启动 API 服务以支持对话功能。文中提供了 curl 和 Python 两种调用方式示例,方便用户测试与集成。
Spring漏洞太难搞?AiPy生成漏洞检测辅助工具
本文介绍了 Spring 框架的漏洞风险、优缺点,并提出通过开发可视化工具 Aipy 来解决未授权访问问题。Spring 广泛应用于企业级开发,但因配置不当可能导致 RCE、数据泄露等漏洞。其优点包括强大的生态系统和灵活的事务管理,但也存在学习曲线陡峭、性能开销等问题。为应对安全挑战,Aipy 提供 GUI 界面,可自动扫描 Spring 组件(如 Swagger UI、Actuator)中的未授权漏洞,标记风险并提供修复方案,结果以图表形式展示,支持报告导出,有效提升安全性和易用性。
Qwen 家族再上新!
Qwen3 Embedding 是基于 Qwen3 基础模型训练的文本嵌入模型系列,可将离散符号转化为连续向量,捕捉语义关系。结合 Qwen3 Reranker 模型,通过“初筛+精排”流程提升搜索与推荐系统的相关性排序能力。该系列模型支持多语言、提供灵活架构(0.6B-8B 参数规模),并在 MTEB 多语言榜单中排名第一。用户可通过 Hugging Face、ModelScope 和 GitHub 快速体验模型服务。
别让你的大模型被忽悠了,聊聊prompt注入攻击
本文探讨了Prompt工程中的隐私与安全问题,重点分析了“奶奶漏洞”及更广泛的Prompt攻击现象,特别是Prompt注入的原理与防御手段。Prompt注入通过构造恶意输入突破模型限制,使LLM执行非预期操作。文章介绍了直接注入和间接注入类型,并提供了多种防御方案,如输入过滤、强化系统指令、接入第三方校验库及多模型协作防御。此外,还讨论了Prompt逆向工程及其正负影响,以及恶意MCP服务投毒的实际案例,如GitHub Copilot漏洞。最后提出了动态权限控制和持续安全监测等解决策略。
微医控股与阿里云达成战略合作,双方将携手基于通义千问大模型联合打造医疗全场景智能体,共同构建医疗垂类大模型
2025年6月17日,微医控股与阿里云达成战略合作,共建医疗AI基座及医疗全场景智能体。双方将基于通义千问大模型打造医疗垂类大模型,升级微医“5+1”智能体,并在诊断、用药、健康管理等环节深化应用。微医将结合阿里云技术优势推进IDC上云,助力AI+医疗基础设施建设,共同制定行业标准并推广城市级AI数字健共体。目前,微医AI服务已连接全国1.2万家医院和30万名医生,健康管理会员超100万。
视觉感知RAG×多模态推理×强化学习=VRAG-RL
通义实验室自然语言智能团队发布并开源了VRAG-RL,一种视觉感知驱动的多模态RAG推理框架。它能像人一样“边看边想”,通过粗到细的视觉仿生感知机制,逐步聚焦关键区域,精准提取信息。VRAG-RL结合强化学习与多专家采样策略,优化检索与推理路径,在多个视觉语言基准数据集上表现出色,显著提升准确性和效率。项目已发布技术方案并开源代码,支持快速部署和二次开发。
【开源项目】MaxKB4J基于java开发的工作流和 RAG智能体的知识库问答系统
MaxKB4J是一款基于Java开发的开源LLM工作流应用与RAG知识库问答系统,结合MaxKB和FastGPT优势,支持智能客服、企业知识库等场景。它开箱即用,可直接上传/爬取文档,支持多种大模型(如Qwen、通义千问等),具备灵活的工作流编排能力,并无缝嵌入第三方系统。技术栈包括Vue.js、Springboot3、PostgreSQL等,提供稳定高效的智能问答解决方案。访问地址:`http://localhost:8080/ui/login`,项目详情见[Gitee](https://gitee.com/taisan/MaxKB4j)。
Aipy实战:使用Deepseek-V3生成多协议弱口令爆破调度工具
Aipy多协议弱口令爆破调度系统针对传统单协议工具碎片化、管理低效等问题,集成HTTP、SSH、MySQL等协议支持,提供图形化统一操作界面。其核心特性包括:动态资源分配的任务调度、实时可视化进度监控、智能账户锁定识别及HTML结果导出。通过上传自定义字典、配置并发数等功能,实现高效爆破,解决了多协议切换中断、人工追踪进度等痛点,为渗透测试提供自动化解决方案。
本地部署的qwen3-8b模型和百炼上的qwen3-8b模型效果不一致
我在使用Function Call时发现,百炼平台上的Qwen3-8B模型与本地部署的Qwen3-8B模型效果存在差异,主要体现在函数参数生成上,本地模型常出现漏参或JSON格式错误,而百炼模型表现正常。想确认百炼平台的Qwen3-8B是否为更高版本?