编程语言,算法相关技术专家
Hybrid computing using a neural network with dynamic external memory Nature 2016 原文链接:http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature20101.pdf 摘要:人工智能神经网络 在感知处理,序列学习,强化学习领域得到了非常大的成功,但是限制于其表示变量和数据结构的能力,长时间存储知识的能力,因为其缺少一个额外的记忆单元。
关于 Graph Convolutional Networks 资料收集 1. GRAPH CONVOLUTIONAL NETWORKS ------ THOMAS KIPF, 30 SEPTEMBER 2016 Link:http://tkipf.
坚持完成这套学习手册,你就可以去 Google 面试了 系统 指针 value Google 面试 阅读6138 本文为掘金投稿,译文出自:掘金翻译计划 原文地址:Google Interview University 原文作者:John Washam 译者:Aleen,Newton,bobmayuze,Jaeger,sqrthree 友情提醒:文章较长,需耐心阅读。
HOME ABOUT CONTACT SUBSCRIBE VIA RSS DEEP LEARNING FOR ENTERPRISE Distributed Deep ...
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Google 。
Graph-powered Machine Learning at Google Thursday, October 06, 2016 Posted by Sujith Ravi, Staff Research Scientist, Googl...
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playing Out Run, session 201609171218_175e...
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文《深度学习主机攒机小记》,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑。
几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm 13/05/2012rorasa ...
A CNN Cascade for Landmark Guided Semantic Part Segmentation ECCV 2016 摘要:本文提出了一种 CNN cascade (CNN 级联)结构,根据一系列的定位(landmarks or keypoints),得到特定的 pose 信息,进行 语义 part 分割。
Deep Recurrent Q-Learning for Partially Observable MDPs 摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on being able to perceive the complete game screen at each decision point.
Deep Attention Recurrent Q-Network 5vision groups 摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性。
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state ...
FastML Machine learning made easy RSS Home Contents Popular Links Backgrounds About Deep learning architecture diagrams 2016-09-...
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Start...
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This top...
Hierarchical Convolutional Features for Visual Tracking ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer 之间提取出来的不同特征进行跟踪。
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2016 摘要:跨摄像机的行人再识别仍然是一个具有挑战的问题,特别是摄像机之间没有重叠的观测区域。
Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的。
Kevin Zakka's Blog About Nuts and Bolts of Applying Deep Learning Sep 26, 2016 This weekend was very hectic (catching up on courses an...
Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进行加权融合,是一个需要解决的问题.本文提出一种新的 data-adaptive...
Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a comment » Introduction Well afte...
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6 原文出处: 我爱计算机 (@tobe迪豪 ) 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者。
gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了不错的效果,但是他们这些 online-only approach 限制了模型可...
关于 Local feature 和 Global feature 的组合 1.全局上下文建模:
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找。
TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Day 1 里,先了解了一下 NLP 和 DP 的主要概念,对它们有了一个大体的印象,用向量去表示研究对象,用神经网络去学习,用 TensorFlow 去训练模型,基本的模型和算法包括 word2vec,softmax,RNN,LSTM,GRU,CNN,大型数据的 seq2seq,还有未来比较火热的研究方向 DMN,还有模型的调优。
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on September 9, 2016 in XGBoost 0 0 0 0 G...
How to Configure the Gradient Boosting Algorithm by Jason Brownlee on September 12, 2016 in XGBoost 0 0 0 0 Gradient boosting is one of t...
Teaching Your Computer To Play Super Mario Bros. – A Fork of the Google DeepMind Atari Machine Learning Project Posted by ehrenbrav on August 2...
Awesome Python A curated list of awesome Python frameworks, libraries, software and resources.
最近写 AAAI 的文章,下载了其模板,但是蛋疼的是,总是提示错误,加上参考文献总是出错: 如下: ! pdfTeX error (ext4): \pdfendlink ended up in different nesting level than \pd fstartlink.
Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sept.
Deep Learning in a Nutshell: Reinforcement Learning Share: Posted on September 8, 2016 by Tim Dettmers No CommentsTagged Deep Learning, De...
Doing well in your courses a guide by Andrej Karpathy Here is some advice I would give to younger students if they wish to do well in their undergraduate courses.
A Survival Guide to a PhD Sep 7, 2016 This guide is patterned after my “Doing well in your courses”, a post I wrote a long time ago on s...
An overview of gradient descent optimization algorithms Table of contents: Gradient descent variantsChallenges Batch gradient desc...
Deep Learning in a Nutshell: Core Concepts Share: Posted on November 3, 2015 by Tim Dettmers 7 CommentsTagged cuDNN, Deep Learning, Deep N...
本文转自:http://www.cosmosshadow.com/ml/%E5%BA%94%E7%94%A8/2015/12/07/%E7%89%A9%E4%BD%93%E6%A3%80%E6%B5%8B.
本文转自:http://www.cosmosshadow.com/ml/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C/2016/03/08/Attention.
awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Part 2 Intro...
Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) ...
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签。
本文转自:http://geek.csdn.net/news/detail/96636 现代C++函数式编程 C++ 函数式编程 pipeline 开发经验 柯里化 阅读2127 作者简介: 祁宇,武汉烽火云创软件技术有限公司研发中心技术总监,《深入应用C++11》作者,C++开源社区purecpp.org创始人,致力于C++11的应用、研究和推广。
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings.
Awesome Deep Vision A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision.
awesome-nlp A curated list of resources dedicated to Natural Language Processing Maintainers - Keon Kim, Martin Park Please re...
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning...
Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language).