论文笔记之: Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

简介:  Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function  CVPR 2016      摘要:跨摄像机的行人再识别仍然是一个具有挑战的问题,特别是摄像机之间没有重叠的观测区域。

 

 Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function 

CVPR 2016 

 

  摘要:跨摄像机的行人再识别仍然是一个具有挑战的问题,特别是摄像机之间没有重叠的观测区域。本文中我们提出一种 多通道 基于part 的卷积神经网络模型,并且结合 改善的三元组损失函数 来进行最终的行人再识别。具体来说,所提出的 CNN 是由多个channel构成的,可以联合的学习 global full-body local body-parts feature of the input persons. 

 

  引言:行人在识别依然存在的挑战:

    1. 不同摄像机下,剧烈的形变 和 混杂的环境 ;

    2. 随着时空变化导致的 行人姿态的剧烈变化 ;

    3. 背景的复杂 和 遮挡 ;

    4. 不同的个体之间可能共享相似(想死)的外观 ; 

 

  此外,脸部的遮挡或者不可见,使得许多生物学的方法并不适应。下图展示了相关的数据集:

  

  给定一张所要找寻的行人图像,在一系列候选中,去寻找,需要解决两个问题:

  1. 好的图像特征 来表示 target images 和 candidate images ; 

  2. 合适的距离度量 不可避免的来确定候选中是否存在 target image 。 

 

  现有的方法大部分都集中精力于 第一种思路。当双方的特征都提取完毕后,就开始选择标准的距离度量来决定 image pairs 的相似度。 

  

  而本文就着眼于 将这两个独立的阶段,联合的进行处理,即:Joint feature extraction and distance metric learning. 

  为了更好的学习特征,我们提出一种新的,多通道的 CNN 模型,可以学习到 行人全身 和 部分的特征。然后将这两个特征 concatenate 在一起,输入给网络的 fc 层,最终进行预测。

  此外,借助于 三元组损失函数的思想,本文做了稍微的改动,即:

    原本的三元组要求:only require the intra-class feature distances to be less than the inter-class ones ; 

    而改善后损失函数进一步的要求: the intra-class feature distances to be less than a predefined margin. 

 

  实验结果表明这个小的改动可以提升将近 4个点 ! 

 

  本文的所提出的 CNN model 和 改进的三元组损失函数 可以认为是学习一个映射函数,使得能够将原始 raw image 映射成 一个特征空间,该特征空间使得同一个人的图像距离 小于 不同行人的图像距离。所以,所提出的框架,可以学习到最优的特征和距离度量,从而更好的进行行人的在识别任务。

 

  接下来 废话少来,我们先看大致流程框架:

 

  像上图所展示的那样:

  本文是用三个网络结构来学习三个图像,这其中有两个相同身份的 human,另一个是 negative images。目标就是使得其中相同的行人之间的距离 小于 不同身份的图像距离。

  

  具体来讲,关于 multi-channel parts-based CNN model 主要体现在以下几点:

 

 

  主要是由以下几个 layer 构成的:

  1. one global convolutional layer ; 

  2. one full-body convolution layer ; 

  3. four body-part convolutional layers ; 

  4. five channel-wise full connection layers ; 

  5. one network-wise full connection layer. 

 

  看起来很复杂的一个网络结构,被细分为这几个分支之后,就显得不那么复杂了,但是却取得了不错的效果。因为这种网络结构很暴力啊,感觉,这种细分到 part 的网络结构,如果不是自动定位的 part,那么就会显得非常的不智能。

 

  然后,就是改善的三元组损失函数了。

  但是,这个损失函数并没有显示的表示:target image 和 positive image 之间的距离应该有多近。所造成的一个结果,就可能是:属于同一个行人的 instance 可能构成一个大的 cluster,并且有一个较大的 intra-class distance in the learned feature space. 明显的是,并没有一个需要的输出,这不可避免的会损害再识别的性能。 

  基于以上观察,我们做了相应的改进。我们添加了相应的新的损失函数来增强约束。target image 和 positive image 之间的距离应该小于一个阈值 $\tau_2$, 并且这个阈值应该小于 $\tau_1$。

  这个改进的损失函数进一步的拉近了同一个human之间的距离,并且拉远了 不同行人之间的距离。

 

  其中,N 是triplet训练样本的个数,$\beta$ 平衡了类别内部 和 类别之间 的约束。距离函数 d(. , .) 是 L2-norm distance.

 


 

  训练算法

  

 


总结:

  总体来说,感觉还是比较暴力的解决方案。一方面来说,文章提出了一种利用 human part 和 global body 进行精细化识别的框架来提供更加有效的 feature。另一方面,改善了三元组损失函数,使得最终的训练更加有效。 这是本文中,两个最重要的创新点。

  但是,对于行人 part 的定位文章并未做详细描述,估计是靠手工标注来完成的。那么,这个就有点 low 了。。。

  

  

 

 

相关文章
|
3月前
|
机器学习/深度学习 Web App开发 编解码
论文精度笔记(四):《Sparse R-CNN: End-to-End Object Detection with Learnable Proposals》
Sparse R-CNN是一种端到端的目标检测方法,它通过使用一组可学习的稀疏提议框来避免传统目标检测中的密集候选框设计和多对一标签分配问题,同时省去了NMS后处理步骤,提高了检测效率。
68 0
论文精度笔记(四):《Sparse R-CNN: End-to-End Object Detection with Learnable Proposals》
|
3月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
56 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
6月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
59 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
机器学习/深度学习 算法 数据可视化
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
 过去几年,在经典数据集PASCAL上,物体检测的效果已经达到 一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上 下文环境的复杂集成系统。在这篇论文里,我们提出了一种简单并且 可扩展的检测算法,可以在VOC2012最好结果的基础上将mAP值提 高30%以上——达到了53.3%。
174 0
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
|
8月前
|
机器学习/深度学习 人工智能 算法
神经网络算法——损失函数(Loss Function)
神经网络算法——损失函数(Loss Function)
350 0
|
8月前
|
机器学习/深度学习 网络架构 计算机视觉
CNN经典网络模型之GoogleNet论文解读
GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。
405 0
|
存储 算法 计算机视觉
【检测|RCNN系列-5】Light-Head R-CNN的稳精度、提速度之路(附论文获取方式)
【检测|RCNN系列-5】Light-Head R-CNN的稳精度、提速度之路(附论文获取方式)
157 0
|
机器学习/深度学习 存储 编解码
计算机视觉论文速递(七)FAN:提升ViT和CNN的鲁棒性和准确性
在本文中研究了Self-Attention在学习鲁棒表征中的作用。本研究是基于Vision Transformer中新出现的Visual Grouping的特性进行深入研究的,Visual Grouping也表明Self-Attention可能是通过改进的中层表征来促进鲁棒性。
173 0
|
机器学习/深度学习 算法 数据可视化
计算机视觉论文速递(四)Dynamic Sparse R-CNN:Sparse R-CNN升级版,使用ResNet50也能达到47.2AP
 首先,Sparse R-CNN采用一对一标签分配方案,其中匈牙利算法对每个Ground truth只匹配一个正样本。这种一对一标签分配对于学习到的proposal boxes和Ground truth之间的匹配可能不是最佳的。为了解决这一问题,作者提出了基于最优传输算法的动态标签分配(DLA),在Sparse R-CNN的迭代训练阶段分配递增的正样本。随着后续阶段产生精度更高的精细化proposal boxes,在后续阶段对匹配进行约束,使其逐渐松散。
154 0
|
机器学习/深度学习 算法 数据挖掘
深度学习论文阅读目标检测篇(三):Faster R-CNN《 Towards Real-Time Object Detection with Region Proposal Networks》
 最先进的目标检测网络依靠region proposal算法来推理检测目标的位置。SPPnet[1]和Fast R-CNN[2]等类似的研究已经减少了这些检测网络的运行时间,使得region proposal计算成为一个瓶颈。在这项工作中,我们引入了一个region proposal网络(RPN),该网络与检测网络共享整个图像的卷积特征,从而使近乎零成本的region proposal成为可能。
417 0

热门文章

最新文章