能力说明:
掌握企业中如何利用常见工具,进行前端开发软件的版本控制与项目构建和协同。开发方面,熟练掌握Vue.js、React、AngularJS和响应式框架Bootstrap,具备开发高级交互网页的能力,具备基于移动设备的Web前端开发,以及Node.js服务器端开发技能。
能力说明:
熟练掌握Docker各类高级特性,包括容器数据卷、DockerFile构建等;熟练使用Docker封装MySQL、Redis、Tomcat、Apache等镜像,并可在公有云或私有云部署并保持稳定运行。
能力说明:
熟练掌握Linux常用命令、文件及用户管理、文本处理、Vim工具使用等,熟练掌握企业IP规划、子网划分、Linux的路由、网卡、以及其他企业级网络配置技术,可进行Web服务器(Nginx),以及数据库(My SQL)的搭建、配置、应用,可根据需求编写Shell脚本,通过常用工具进行linux服务器自动化运维。
能力说明:
掌握Java开发环境下所需的MySQL高级技巧,包括索引策略、innodb和myisam存储引擎,熟悉MySQL锁机制,能熟练配置MySQL主从复制,熟练掌握日常SQL诊断和性能分析工具和策略。可对云数据库进行备份恢复与监控、安全策略的设置,并可对云数据库进行性能优化。掌握主要NOSQL数据库的应用技术。
某政企事业单位安全运维工程师,主要从事系统运维及网络安全工作,多次获得阿里云、华为云、腾讯云征文比赛一二等奖;CTF选手,白帽,全国交通行业网络安全大赛二等奖,全国数信杯数据安全大赛银奖,手握多张EDU、CNVD、CNNVD证书,欧盟网络安全名人堂提名,联合国网络安全名人堂提名
DeepSeek自发布以来,凭借卓越的技术性能和开源策略迅速吸引了全球关注。DeepSeek-R1作为系列中的佼佼者,在多个基准测试中超越现有顶尖模型,展现了强大的推理能力。然而,由于其爆火及受到黑客攻击,官网使用受限,影响用户体验。为解决这一问题,阿里云提供了多种解决方案。
阿里云百炼平台近日上线了DeepSeek-V3、DeepSeek-R1及其蒸馏版本等六款全尺寸AI模型,参数量达671B,提供高达100万免费tokens。这些模型在数学、代码、自然语言推理等任务上表现出色,支持灵活调用和经济高效的解决方案,助力开发者和企业加速创新与数字化转型。示例代码展示了如何通过API使用DeepSeek-R1模型进行推理,用户可轻松获取思考过程和最终答案。
随着影视、游戏、广告等内容产业的爆发式增长,剧本创作与动画制作的需求量和复杂度持续攀升。传统流程耗时耗力且成本高,平均需12-18个月完成一部中等规模3D动画项目。阿里云通过“AI+云计算”重构这一链路,提出从剧本到画面的端到端创作提效方案,涵盖智能生成剧本、自动化动画创作及云端协作,旨在降本50%、提速3倍。本文将从技术能力、创作自由度、商业化适配性三大维度解析该解决方案,并提出多项改进建议,助力内容团队实现高效创作。 [了解更多并在线部署](https://www.aliyun.com/solution/tech-solution/animation-creation)
在当今数字化时代,网络安全至关重要。Nginx作为流行的Web服务器,不仅提供高性能,还具备强大的安全保障功能。然而,默认配置可能无法抵御所有安全威胁,因此对Nginx进行安全加固尤为重要。本文为系统管理员、开发者等提供详尽的安全加固指南,涵盖基础到高级策略,包括隐藏版本号信息、限制敏感目录访问、启用HTTPS、配置错误页面、应用内容安全策略(CSP)、设置正确文件权限、添加安全HTTP响应头、限制连接数、配置IP白名单、优化SSL配置、确保文件上传安全、防止常见攻击。通过这些措施,可以有效提升Nginx的安全性,保护网站和应用程序免受潜在威胁。
自20世纪中叶以来,人工智能(AI)和机器学习(ML)经历了从基于逻辑推理的专家系统到深度学习的深刻转变。早期研究集中在规则系统,依赖明确编码的知识库和逻辑推理。随着计算能力提升和大数据时代的到来,机器学习逐渐成为主流,支持向量机、决策树等算法解决了复杂问题。 面对模型规模扩大带来的计算资源挑战,混合专家模型(MoE)应运而生。MoE通过将任务分解给多个专门化的子模型,并由门控网络动态选择合适的专家组合,实现了计算效率与性能的平衡。MoE不仅解决了传统模型扩展性和计算效率的瓶颈,还在大型语言模型等领域大幅降低计算成本,使得训练数十亿乃至数万亿参数的模型成为可能。
在机器学习和深度学习中,过拟合和欠拟合是影响模型泛化能力的两大常见问题。过拟合指模型在训练数据上表现优异但在新数据上表现差,通常由模型复杂度过高、数据不足或质量差引起;欠拟合则指模型未能充分学习数据中的模式,导致训练和测试数据上的表现都不佳。解决这些问题需要通过调整模型结构、优化算法及数据处理方法来找到平衡点,如使用正则化、Dropout、早停法、数据增强等技术防止过拟合,增加模型复杂度和特征选择以避免欠拟合,从而提升模型的泛化性能。
向量数据库是专为存储和查询高维度向量数据设计的系统,适用于处理文本、图像等非结构化数据。Milvus 是一个高性能、可扩展的向量数据库,支持深度神经网络生成的大规模嵌入向量。安装 Milvus 需要先安装 Docker,然后通过 Docker Compose 启动 Milvus 服务。pymilvus 是其官方 Python SDK,提供了丰富的 API 用于管理集合、插入数据和执行查询。用户可以通过 pymilvus 进行连接、创建集合、插入数据、构建索引及执行语义搜索等操作。
前向传播是神经网络中信息从输入层经过隐藏层传递到输出层的过程。每个神经元接收前一层的输出,通过加权求和和激活函数处理后传递给下一层,最终生成预测结果。此过程涉及输入信号、加权求和、激活函数应用等步骤。前向传播用于生成预测结果,在训练阶段与真实标签比较以计算损失函数,并在推理阶段直接生成预测值。反向传播则利用链式法则计算损失函数相对于权重的梯度,调整参数以减小误差,从而优化模型性能。两者结合实现神经网络的有效训练和预测。
阿里云OS控制台是专为运维人员设计的高效管理工具,旨在提升用户体验和简化操作流程。它不仅集成了OS Copilot等智能助手,还提供了系统诊断、订阅管理和AI组件等功能,支持API、SDK、CLI等多种管理方式。通过该平台,用户可以轻松纳管服务器、监控健康状态、执行故障排查,并享受针对阿里云环境优化的运维体验。整体而言,阿里云OS控制台为运维工作带来了极大的便利与效率提升。
在数字化快速发展的时代,人工智能(AI)技术已广泛应用,但大型深度学习模型对计算资源的需求日益增长,增加了部署成本并限制了其在资源有限环境下的应用。为此,研究人员提出了模型蒸馏和模型量化两种关键技术。 模型蒸馏通过将大型教师模型的知识传递给小型学生模型,利用软标签指导训练,使学生模型在保持较高准确性的同时显著减少计算需求,特别适用于移动设备和嵌入式系统。 模型量化则是通过降低模型权重的精度(如从32位浮点数到8位整数),大幅减少模型大小和计算量,提高运行速度,并能更好地适应低配置设备。量化分为后训练量化和量化感知训练等多种方法,各有优劣。
Apache Kafka 是一个高吞吐量、低延迟的分布式消息系统,广泛应用于实时数据处理、日志收集和消息队列等领域。它最初由LinkedIn开发,2011年成为Apache项目。Kafka支持消息的发布与订阅,具备高效的消息持久化能力,适用于TB级数据的处理。
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
阿里云OS Copilot经过多轮迭代,现已支持多端操作系统(包括Ubuntu、CentOS、Anolis OS等)及aarch64架构,极大扩展了其适用范围。新特性包括阿里云CLI调用、系统运维及调优工具的直接调用、Agent模式实装以及复杂任务处理能力。这些更新显著提升了用户体验和效率,特别是在处理紧急情况时,OS Copilot能快速查找并执行命令,节省大量时间和精力。此外,通过自然语言交互,用户可以轻松完成如系统健康检查、文件操作及日志分析等任务。总之,OS Copilot已从内测时的辅助工具进化为合格的贴身管家,极大地简化了日常运维工作。
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
算力是数字经济发展的重要支撑,尤其在AI和大数据应用中起着关键作用。阿里云致力于构建全球领先的算力基础设施,助力各行业数字化转型。吴泳铭和马云均强调了算力在未来科技竞争中的核心地位。2023年底,我国算力总规模达230EFLOPS,位居全球第二。算力分为通用、智能和超算算力,广泛应用于人工智能训练与推理等场景。中国正加速建设智算中心,推动算力产业链发展,并注重绿色低碳和智能运维,以应对日益增长的计算需求。
阿里通义千问Qwen团队于12月25日推出首个开源视觉推理模型QVQ-72B-Preview,该模型在数学、物理、化学等领域表现出色,在MMMU基准测试中得分70.3,超越Qwen2-VL-72B-Instruct。尽管在部分任务如立体图形计数上存在局限性,QVQ-72B-Preview仍展示了强大的视觉理解和推理能力。模型目前仅支持单轮对话和图像输出,不支持视频输入。地址:https://modelscope.cn/studios/Qwen/QVQ-72B-preview
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
SQL注入是Web应用中常见的安全威胁,攻击者通过构造恶意输入执行未授权的SQL命令。预编译语句(Prepared Statements)是一种有效防御手段,它将SQL代码与数据分离,确保用户输入不会被解释为SQL代码的一部分。本文详细介绍了SQL注入的危害、预编译语句的工作机制,并结合实际案例和多语言代码示例,展示了如何使用预编译语句防止SQL注入,强调了其在提升安全性和性能方面的重要性。
通义灵码AI程序员是阿里云推出的智能开发工具,能够自主完成缺陷修复、需求实现和研发问答等任务。用户只需输入需求,AI程序员即可自动生成代码并提交合并请求。尽管目前仍处于内测阶段,存在一些问题,但其潜力巨大,有望大幅提升开发效率与质量,成为跨时代的产品。本文详细介绍了该工具的功能及实操体验,并对其未来发展提出了建议。
本文介绍了DOM-XSS构造、运算符的威力和模板字符串妙用三个主题。通过多个实例图解,详细展示了如何利用DOM特性构造XSS攻击、JavaScript运算符在代码中的巧妙应用,以及模板字符串在开发中的灵活运用。这些内容对提升Web安全意识和编程技巧具有重要参考价值。
本文介绍了漏洞检测的发展历程、现状及未来展望。2023年全球披露的漏洞数量达26447个,同比增长5.2%,其中超过7000个具有利用代码,115个已被广泛利用,涉及多个知名软件和系统。文章探讨了从人工审计到AI技术的应用,强调了数据集质量对模型性能的重要性,并展示了不同检测模型的工作原理与实现方法。此外,还讨论了对抗攻击对模型的影响及提高模型可解释性的多种方法,展望了未来通过任务大模型实现自动化漏洞检测与修复的趋势。
网络空间安全中的红蓝对抗场景通过模拟真实的攻防演练,帮助国家关键基础设施单位提升安全水平。具体案例包括快递单位、航空公司、一线城市及智能汽车品牌等,在演练中发现潜在攻击路径,有效识别和防范风险,确保系统稳定运行。演练涵盖情报收集、无差别攻击、针对性打击、稳固据点、横向渗透和控制目标等关键步骤,全面提升防护能力。
本文介绍了多模态数据信息提取技术,涵盖文本、文档、图片OCR、图片属性及视频内容的提取与分析。该方案支持一键部署,适用于需高效处理大量信息的用户和电商平台。体验显示,文本提取响应迅速,而涉及OSS存储的任务稍慢。未来可加强音频理解和多模态融合,提升整体性能。
渗透测试的核心在于信息收集,涵盖人和系统的多维度数据。实网攻防流程包括资产收集、漏洞利用、稳固据点、内网横向和控制靶标五个阶段。外网信息收集旨在全面了解目标单位的公开信息,寻找突破口;内网信息收集则聚焦网络连通性和密码凭证,确保攻击行动的有效性和针对性。整个过程强调逐步深入的信息分析,为后续攻击提供支持。
本文介绍了智能汽车的整车架构、协议栈结构、攻击点分析、渗透思路及案例分享。整车架构涵盖应用层、协议层和物理层,详细解析各层次功能模块和通信机制。攻击点包括Wi-Fi、USB、NFC等,展示车辆通信接口和系统组件的安全风险。渗透思路从信息收集到系统内部探索,利用固件漏洞控制车辆功能。案例展示了网段隔离不足导致的SSH访问和OTA日志审计漏洞,揭示了潜在的安全威胁。
信息收集是网络安全中的重要环节,常用工具如Hunter、Fofa和扫描工具可帮助全面了解目标系统的网络结构与潜在漏洞。遇到默认Nginx或Tomcat 404页面时,可通过扫路径、域名模糊测试、搜索引擎缓存等手段获取更多信息。AllIN工具(GitHub: P1-Team/AllIN)能高效扫描网站路径,发现敏感信息。漏洞利用则需充分准备,以应对突发情况,确保快速拿下目标站点。 简介:信息收集与漏洞利用是网络安全的两大关键步骤。通过多种工具和技术手段,安全人员可以全面了解目标系统,发现潜在漏洞,并制定有效的防御和攻击策略。
本文介绍了在后渗透测试中使用LSTAR工具和PowerShell脚本进行RDP状态查询、端口获取及凭据收集的过程,强调了高强度实战场景下的OPSEC需求。通过MITRE ATT&CK框架的应用,详细阐述了凭证访问、发现和收集等关键技术,确保攻击者能够隐蔽、持续且高效地渗透目标系统,最终获取核心数据或控制权。文中还展示了SharpHunter等工具的自动化实现,进一步提升了操作的安全性和效率。
C2(命令与控制)是攻击者远程控制受感染主机的技术。通过合法服务平台(如Slack、Telegram等)的API,攻击者可以隐蔽地传输指令和数据,避免被传统检测机制发现。合法服务具备以下优势: 1. **隐蔽性强**:流量隐藏在正常通信中,难以被检测。 2. **开发成本低**:无需自行开发服务端,减少工作量。 3. **抗封禁能力**:合法域名/IP不易被封禁,威胁情报不会标黑。 4. **团队协作**:天然支持多成员协同作战。 示例包括SaaiwC组织利用Telegram和APT29组织利用Zulip平台进行数据传输和控制。
终端安全现状面临多重挑战,包括传统签名技术失效、新型无文件攻击频发、专业人才匮乏、分支机构安全管理不足等。企业终端覆盖不全、日志缺失、策略更新依赖厂商,导致运营排查困难。钓鱼攻击手法愈发精细,静态和动态对抗加剧,攻击者利用正常权限入侵,窃取凭据。Web3技术发展使加密货币成为新目标,职业黑客盯上个人钱包和交易公司。防护升级需涵盖预防、检测、响应和运营四个阶段,借助AI和威胁情报降低告警量,提升整体安全水平。
大模型基础设施的安全攻防体系涵盖恶意输入防御和基础设施安全,包括框架、三方库、插件、平台、模型和系统安全。关键漏洞如CVE-2023-6019(Ray框架命令注入)、CVE-2024-5480(PyTorch分布式RPC)及llama.cpp中的多个漏洞,强调了代码安全性的重要性。模型文件安全方面,需防范pickle反序列化等风险,建议使用Safetensors格式。相关实践包括构建供应链漏洞库、智能化漏洞分析和深度检测,确保全方位防护。
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
阿里云推出的云服务诊断工具是一款强大的“云端资源诊疗大师”,旨在提高故障排查效率,保障业务连续性和稳定性。该工具包含“健康状态”和“诊断”两大核心功能,能够实时监控云资源的健康状态,并通过智能诊断功能帮助用户迅速识别和解决潜在问题。此外,即将推出的“一键诊断”功能将进一步简化问题排查过程,让用户能够一次性解决所有云资源的问题。
DataWorks是阿里云推出的一站式智能大数据开发治理平台,自2009年发布以来,历经多次迭代,成为企业数字化转型的重要工具。本文通过多个实践案例,如公共电影票房数据预处理,展示了DataWorks如何帮助企业高效处理大数据,涵盖数据集成、ETL开发、数据分析及治理等全流程。最新版DataWorks引入了智能助手Copilot,进一步提升了用户体验和工作效率。
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
双十一期间,淘宝内测AI助手“淘宝问问”,基于阿里通义大模型,旨在提升用户在淘宝上的商品搜索和推荐效率。该助手通过品牌推荐、兴趣商品推荐和关联问题三大板块,提供个性化购物体验。其背后采用多智能体架构,包括规划助理和商品导购助理,通过对话历史和用户输入,实现精准商品推荐。此外,文章还介绍了如何快速部署此解决方案,并探讨了其对现代购物体验的影响。
本文介绍了当前大模型应用的趋势,从单纯追求参数量转向注重实际应用效果与效率,重点探讨了结合大模型的开发工具,如Bolt.new、v0、Cursor等,如何形成完整的AI工具链,助力开发者高效构建、优化和部署应用。通过实例演示了从项目创建、前端优化到后端代码改写的全过程,强调了提示词设计的重要性,并推荐了适用于不同场景的工具组合方案。
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
2024年双十一,阿里云推出多项重磅优惠,特别针对新迁入云的企业和初创公司提供丰厚补贴。其中,36元一年的轻量应用服务器、1.95元/小时的16核60GB A10卡以及1元购域名等产品尤为值得关注。这些产品不仅价格亲民,还提供了丰富的功能和服务,非常适合个人开发者、学生及中小企业快速上手和部署应用。
云原生应用开发平台CAP是阿里云提供的一站式应用开发及生命周期管理平台。它内置丰富的Serverless和AI应用模板、先进的开发者工具和企业级应用管理功能,帮助个人和企业开发者快速构建、部署和管理云上应用,大幅提升研发、部署和运维效能。CAP支持Web应用、AI应用、ETL数据处理等多种场景,提供图形化、低代码的流程编排能力,助力开发者高效构建复杂业务流程。
自从2023年通义灵码发布以来,这款基于阿里云通义大模型的AI编码助手迅速成为开发者心中的“明星产品”。它不仅为个人开发者提供强大支持,还帮助企业团队提升研发效率,推动软件开发行业的创新发展。本文将深入探讨通义灵码最新版本的三大新功能:@workspace、@terminal 和 #team docs,分享这些功能如何在实际工作中提高效率的具体案例。
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
在数字化转型的背景下,企业面临海量文档管理的挑战。传统的文档管理方式效率低下,难以满足业务需求。阿里云推出的文档智能(Document Mind)与检索增强生成(RAG)技术,通过自动化解析和智能检索,极大地提升了文档管理的效率和信息利用的价值。本文介绍了如何利用阿里云的解决方案,快速构建企业专属的“第二大脑”,助力企业在竞争中占据优势。
本文探讨了智能合约的安全性问题,特别是重入攻击、预言机操纵、整数溢出和时间戳依赖性等常见漏洞。文章通过实例详细分析了重入攻击的原理和防范措施,展示了如何利用通义灵码辅助检测和修复这些漏洞。此外,文章还介绍了最新的研究成果,如GPTScan工具,该工具通过结合大模型和静态分析技术,提高了智能合约漏洞检测的准确性和效率。最后,文章总结了灵码在智能合约安全领域的应用前景,指出尽管存在一些局限性,但其在检测和预防逻辑漏洞方面仍展现出巨大潜力。
本文介绍了利用通义灵码辅助复现未公开漏洞的过程,包括XSS和文件包含两种典型漏洞类型。通过具体案例,展示了如何结合CVE描述和源码,使用灵码定位漏洞位置、分析漏洞原因,并验证漏洞的存在。文章强调了灵码在提高漏洞复现效率、减少手动排查时间方面的优势,同时也指出了其在复杂场景下仍需人工判断的局限性。未来,期待灵码能在自动化安全测试、动态分析及威胁建模等领域发挥更大作用,全面提升软件安全性。
本文介绍了作者在数据安全比赛中遇到的一个开源框架的代码审计过程。作者使用了多种工具,特别是“通义灵码”,帮助发现了多个高危漏洞,包括路径遍历、文件上传、目录删除、SQL注入和XSS漏洞。文章详细描述了如何利用这些工具进行漏洞定位和验证,并分享了使用“通义灵码”的心得和体验。最后,作者总结了AI在代码审计中的优势和不足,并展望了未来的发展方向。
本文介绍了一种在Linux系统中记录所有登录用户操作历史的方法,通过在/etc/profile中添加脚本代码,每次用户登录时会自动生成一个包含该用户操作历史的文件。同时,文章还提供了多种查看系统登录记录和日志的方法,如使用last, last -f /var/log/wtmp和cat /var/log/secure | grep 可疑IP等命令,帮助管理员监控系统活动和排查异常行为。此外,通过rpm -Va命令可检查文件完整性,识别可能存在的安全隐患。
本文全面评测了阿里云PolarDB MySQL在四大关键场景下的表现:Serverless极致弹性、列存索引(IMCI)、弹性并行查询(ePQ)以及无感秒切高可用。通过官方提供的免费体验资源,我们深入了解了PolarDB MySQL的核心能力和性能。Serverless极致弹性列存索引(IMCI弹性并行查询(ePQ)无感秒切高可用此外,文章还介绍了PolarDB MySQL在数据备份和HTAP(混合事务/分析处理)场景下的优势,包括灵活的备份策略、高效的全量和库表恢复方式,以及通过IMCI支持的HTAP能力。这些特性共同构成了PolarDB MySQL作为一款先进的云数据库服务的强大竞争力。
2024年巴黎奥运会圆满结束,中国代表团金牌数与美国并列第一,展现了卓越实力。阿里云作为官方云服务合作伙伴,通过先进的AI技术深度融入奥运的各项环节,实现了大规模的云上转播,超越传统卫星转播,为全球观众提供流畅、高清的观赛体验。其中,“子弹时间”回放技术在多个场馆的应用,让观众享受到了电影般的多角度精彩瞬间。此外,8K超高清直播、AI智能解说和通义APP等创新,极大地提升了赛事观赏性和互动性。能耗宝(Energy Expert)的部署则助力实现了赛事的可持续发展目标。巴黎奥运会的成功举办标志着体育赛事正式进入AI时代,开启了体育与科技融合的新篇章。