开发者社区> 问答> 正文

Spark中的产生RDD的原因是什么?

Spark中的产生RDD的原因是什么?

展开
收起
游客k7rjnht6hbtk6 2021-12-10 14:03:19 509 0
1 条回答
写回答
取消 提交回答
  • 1.传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式要进行大量的磁盘IO操作。RDD正是解决这一缺点的抽象方法

    2.RDD的具体描述RDD(弹性数据集)是Spark提供的最重要的抽象的概念,它是一种有容错机制的特殊集合,可以分布在集群的节点上,以函数式编操作集合的方式,进行各种并行操作。可以将RDD理解为一个具有容错机制的特殊集合,它提供了一种只读、只能有已存在的RDD变换而来的共享内存,然后将所有数据都加载到内存中,方便进行多次重用。a.他是分布式的,可以分布在多台机器上,进行计算。b.他是弹性的,计算过程中内错不够时它会和磁盘进行数据交换。c.这些限制可以极大的降低自动容错开销d.实质是一种更为通用的迭代并行计算框架,用户可以显示的控制计算的中间结果,然后将其自由运用于之后的计算。

    3.RDD的容错机制实现分布式数据集容错方法有两种:数据检查点和记录更新RDD采用记录更新的方式:记录所有更新点的成本很高。所以,RDD只支持粗颗粒变换,即只记录单个块上执行的单个操作,然后创建某个RDD的变换序列(血统)存储下来;变换序列指,每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息。因此RDD的容错机制又称“血统”容错。 要实现这种“血统”容错机制,最大的难题就是如何表达父RDD和子RDD之间的依赖关系。实际上依赖关系可以分两种,窄依赖和宽依赖:窄依赖:子RDD中的每个数据块只依赖于父RDD中对应的有限个固定的数据块;宽依赖:子RDD中的一个数据块可以依赖于父RDD中的所有数据块。例如:map变换,子RDD中的数据块只依赖于父RDD中对应的一个数据块;groupByKey变换,子RDD中的数据块会依赖于多有父RDD中的数据块,因为一个key可能错在于父RDD的任何一个数据块中 将依赖关系分类的两个特性:第一,窄依赖可以在某个计算节点上直接通过计算父RDD的某块数据计算得到子RDD对应的某块数据;宽依赖则要等到父RDD所有数据都计算完成之后,并且父RDD的计算结果进行hash并传到对应节点上之后才能计算子RDD。第二,数据丢失时,对于窄依赖只需要重新计算丢失的那一块数据来恢复;对于宽依赖则要将祖先RDD中的所有数据块全部重新计算来恢复。所以在长“血统”链特别是有宽依赖的时候,需要在适当的时机设置数据检查点。也是这两个特性要求对于不同依赖关系要采取不同的任务调度机制和容错恢复机制。

    4.RDD内部的设计每个RDD都需要包含以下四个部分:a.源数据分割后的数据块,源代码中的splits变量b.关于“血统”的信息,源码中的dependencies变量c.一个计算函数(该RDD如何通过父RDD计算得到),源码中的iterator(split)和compute函数d.一些关于如何分块和数据存放位置的元信息,如源码中的partitioner和preferredLocations例如:a.一个从分布式文件系统中的文件得到的RDD具有的数据块通过切分各个文件得到的,它是没有父RDD的,它的计算函数知识读取文件的每一行并作为一个元素返回给RDD;b.对与一个通过map函数得到的RDD,它会具有和父RDD相同的数据块,它的计算函数式对每个父RDD中的元素所执行的一个函数

    2021-12-10 14:19:45
    赞同 展开评论 打赏
问答分类:
问答标签:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
Hybrid Cloud and Apache Spark 立即下载
Scalable Deep Learning on Spark 立即下载
Comparison of Spark SQL with Hive 立即下载