从内往外看,生态圈核心是Spark Core,包括各种Spark的各种核心组件,它们能够对内存和硬盘进行操作,或者调用CPU进行计算。
紧邻核心圈的是与Spark相关的各类接口,比如Java,Python和R等。
这些接口的外部是针对不同类型数据的计算引擎。比如说针对关系型数据进行处理的Spark SQL,针对对流数据进行打包批量处理的Spark Steam,针对Machine Learning相关的库MLib,针对图的GraphX,以及针对大规模数据进行采样和计算从而缩短计算时间的BlinkDB。
再往外就是Spark运行的各种场景。比如说单机运行,在Yarn上进行管理运行等等。
最外层就涉及基础数据存储。我们可以用文档型数据库,关系型数据库,图数据库等等。所有这些数据存储系统Spark都能访问,这归功于Techyon。它对底层不同的数据存储系统进行封装,提供统一的API进行访问。它还可以看作是是对底层数据的缓存,更多关于Techyon的内容可以参照深入浅出Techyon。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。