开发者社区> 问答> 正文

Spark为什么要持久化,一般什么场景下要进行persist操作? 为什么要进行持久化?

Spark为什么要持久化,一般什么场景下要进行persist操作? 为什么要进行持久化?

展开
收起
茶什i 2019-10-28 16:17:18 3248 0
1 条回答
写回答
取消 提交回答
  • spark所有复杂一点的算法都会有persist身影,spark默认数据放在内存,spark很多内容都是放在内存的,非常适合高速迭代,1000个步骤 只有第一个输入数据,中间不产生临时数据,但分布式系统风险很高,所以容易出错,就要容错,rdd出错或者分片可以根据血统算出来,如果没有对父rdd进行persist 或者cache的化,就需要重头做。 以下场景会使用persist 1)某个步骤计算非常耗时,需要进行persist持久化 2)计算链条非常长,重新恢复要算很多步骤,很好使,persist 3)checkpoint所在的rdd要持久化persist, lazy级别,框架发现有checnkpoint,checkpoint时单独触发一个job,需要重算一遍,checkpoint前 要持久化,写个rdd.cache或者rdd.persist,将结果保存起来,再写checkpoint操作,这样执行起来会非常快,不需要重新计算rdd链条了。checkpoint之前一定会进行persist。 4)shuffle之后为什么要persist,shuffle要进性网络传输,风险很大,数据丢失重来,恢复代价很大 5)shuffle之前进行persist,框架默认将数据持久化到磁盘,这个是框架自动做的。

    2019-10-28 16:33:58
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
Hybrid Cloud and Apache Spark 立即下载
Scalable Deep Learning on Spark 立即下载
Comparison of Spark SQL with Hive 立即下载