开发者社区> 问答> 正文

怎么通过pandas获取作图的数据呢?

本问题来自阿里云开发者社区的【11大垂直技术领域开发者社群】。https://developer.aliyun.com/article/706511 点击链接欢迎加入感兴趣的技术领域群。

展开
收起
新闻小助手 2019-08-22 12:47:57 930 0
1 条回答
写回答
取消 提交回答
  • import sys import os import re import datetime import csv

    def get_datetime(record): request_time = "" p = re.compile(r"(?P\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d+)") # p = re.compile(r"(?P[\d.]+)ms") m = p.search(record) if m: request_time = m.group("time") dt = datetime.datetime.strptime(request_time, '%Y-%m-%d %H:%M:%S,%f') return dt

    def parse(log_file_name, result_csv_name): start = 0 end = 0 start_time = '' end_time = '' md5crc32 = '' csv_writer = csv.writer(open(result_csv_name, 'wb'), delimiter = ',') with open(log_file_name, 'rb') as log_file: for i, line in enumerate(log_file): line = line.strip() if 'folderProcessing() INFO download from' in line: start = i start_time = get_datetime(line) elif 'DownLoadFile() INFO download to' in line: end = i end_time = get_datetime(line) # got one download action if end - start == 1: # parse hash md5crc32 = line.rsplit('/', 1)[1] print md5crc32, (end_time - start_time).total_seconds() csv_writer.writerow((md5crc32, (end_time - start_time).total_seconds())) # assert False

    def do_statistics(file_name): import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv(file_name, header = None, names= ['hash', 'time'], dtype = {'time': np.float64}, # nrows = 10000 ) time_series = df.time print time_series.describe() plt.figure() # fig = time_series.hist().get_figure() # define range ranges = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 10.0, 10000) bins = zip(ranges[:-1], ranges[1:]) labels = ['%s-%s'%(begin, end) for i ,(begin, end) in enumerate(bins) ] print labels #print bins #fig = time_series.plot(kind='bar', xticks = ranges) results = [0] * len(bins) for i in time_series: for j , (begin, end) in enumerate(bins): if i > begin and i <= end: results[j] += 1 print results

    mu = time_series.mean()
    median = np.median(time_series)
    sigma = time_series.std()
    
    ax = pd.Series(results).plot(kind='bar', logy = True, figsize=(25, 13.5))
    # dpi = ax.figure.get_dpi()
    # print 'dpi = ', dpi
    # plt.gcf().set_size_inches(25, 13.5)
    
    ax.set_ylabel('Count')
    ax.set_xlabel('Time in seconds')
    # print dir(fig)
    ax.set_xticklabels(labels, rotation = 45)
    ax.set_title('MDSS download statistics')
    
    textstr = 'count=%s\nmin=%.2f\nmax=%.2f\n$\mu=%.2f$\n$\mathrm{median}=%.2f$\n$\sigma=%.2f$'%(time_series.count(),time_series.min(), time_series.max(),mu, median, sigma)
    
    # these are matplotlib.patch.Patch properties
    props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
    
    # place a text box in upper right in axes coords
    ax.text(0.90, 0.95, textstr, transform=ax.transAxes, fontsize=14,
            verticalalignment='top', bbox=props)
    
    ax.figure.show()
    #
    ax.figure.set_size_inches(25, 13.5, forward = True)
    print ax.figure.get_size_inches()
    ax.figure.savefig('result.png', format='png',)
    input('asdfasd')
    

    if name == "main": # print get_datetime("2014-10-23 09:19:34,251 pid=27850") # parse('inpri_p_antiy.log', 'result.csv') do_statistics('result.csv')

    image.png

    2019-10-25 17:45:50
    赞同 展开评论 打赏
问答分类:
问答标签:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
中文:即学即用的Pandas入门与时间序列分析 立即下载
即学即用的Pandas入门与时间序列分析 立即下载
低代码开发师(初级)实战教程 立即下载