本问题来自阿里云开发者社区的【11大垂直技术领域开发者社群】。https://developer.aliyun.com/article/706511 点击链接欢迎加入感兴趣的技术领域群。
最近项目中要用Avro对发送到Kafka中的数据进行序列化, 用Avro进行序列化可以有两种方式: 一种是在内存中序列化,另一种是数据文件格式。 改怎么选择呢? 如果想把Avro集成到现有系统,用内存序列化比较好。 其他情况,考虑用Avro的数据文件格式。 Avro官网上对数据文件格式的序列化讲的很清楚,这次不在赘述,只是介绍一下在内存中如何序列化。 我们以一个简单的Avro模式为例 { “type":"record", "name":"Pair", "doc":"A pair of strings.", "fields": [ {"name":"left", "type":"string"}, {"name":"right", "type":"string"} ] } 将这一模式存贮在一个路劲下(一般是resources路劲下),并命名为Pair.avsc(avsc是Avro模式文件的常用扩展名). Schema schema= Schema.parse(getClass().getResourceAsStream("Pair.avsc"); //声明要加载的模式 //创建Avro记录的实例,为记录的String字段构建了一个Avro Utf8实例 GenericRecord datum=new GenericData.Record(schema); datum.put("left",new Utf8("L")); datum.put("right",new Utf8("R")); //将记录序列化到输出流中 ByteArrayOutputStream out=new ByteArrayOutputStream(); DatumWriter<GenericRecord> write=new GenericDatumWriter<GenericRecord>(schema);//DatumWriter 将数据对象翻译成Encoder对象可以理解的类型, Encoder encoder= new BinaryEncoder(out);//然后由Encoder写到数据流。 write.write(datum,encoder); encoder.flush(); out.close(); //反序列化 DatumReader<GenericRecord> reder=new GenericDatumReader<GenericRecord>(schema); Decoder decoder=DecoderFactory.defaultFactory().createBinaryDecoder(out.toByteArray(),null); GenericRecord result=reader.read(null,decoder); assertThat(result.get("left").toString(),is("L")); assertThat(result.get("right").toString,is("R"));
此答案来源于网络,希望对您有所帮助。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。