数学:博弈论算法概述

简介: 数学:博弈论算法概述

数学:博弈论算法概述

  • NIM游戏
  • 公平组合游戏ICG
  • 有向图游戏
  • Mex运算
  • SG函数
  • 有向图游戏的和
  • 定理


NIM游戏

给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。

取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。


我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。

整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。

所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。

我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。

NIM博弈不存在平局,只有先手必胜和先手必败两种情况。


定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0


公平组合游戏ICG

若一个游戏满足:


1.由两名玩家交替行动;

2.在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;

3.不能行动的玩家判负;


则称该游戏为一个公平组合游戏。

NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。

因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。


有向图游戏

给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。

两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。


任何一个公平组合游戏都可以转化为有向图游戏。

具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。


Mex运算

设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即: mex(S) = min{x}, x属于自然数,且x不属于S


SG函数

在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk

定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:

SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})

特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。


有向图游戏的和

设G1, G2, …, Gm 是m个有向图游戏。

定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。


有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:

SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)


定理

有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。 有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。


本模板来自:AcWing算法基础课

相关博客:博弈论


目录
相关文章
|
6月前
|
存储 安全 算法
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
3月前
|
人工智能 自然语言处理 算法
【人工智能】TF-IDF算法概述
TF-IDF算法,全称Term Frequency-Inverse Document Frequency(词频-逆文档频率),是一种在信息检索和文本挖掘领域广泛应用的加权技术。它通过评估一个词语在文档中的重要程度,来挖掘文章中的关键词,进而用于文本分析、搜索引擎优化等场景。其核心思想是:如果某个词或短语在一篇文章中出现的频率高(TF高),且在其他文章中很少出现(IDF也高),则认为这个词或短语具有很好的类别区分能力,适合用来代表这篇文章的内容。 具体而言,TF-IDF由两部分组成,即词频(TF)和逆文档频率(IDF)。词频(TF)指的是某一个给定的词在该文件中出现的频率。这个数值通常会被归一化
52 3
|
3月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
79 2
|
5月前
|
算法 Java Go
斐波那契数列是一个非常经典的数学问题,在计算机科学中也经常被用作算法设计和分析的例子。
斐波那契数列是一个非常经典的数学问题,在计算机科学中也经常被用作算法设计和分析的例子。
|
4月前
|
算法 安全 网络安全
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
|
4月前
|
机器学习/深度学习 人工智能 算法
计算机算法基础概述与常用算法解析
计算机算法基础概述与常用算法解析
|
5月前
|
机器学习/深度学习 人工智能 算法
计算机算法基础概述与常用算法解析
计算机算法基础概述与常用算法解析
|
5月前
|
存储 算法 安全
加密算法概述:分类与常见算法
加密算法概述:分类与常见算法
|
5月前
|
负载均衡 算法 调度
负载均衡算法概述
负载均衡算法概述
下一篇
无影云桌面