几个常用快速无损压缩算法性能比较

简介:

Snappy
Snappy是在谷歌内部生产环境中被许多项目使用的压缩库,包括BigTable,MapReduce和RPC等。谷歌表示算法库针对性能做了调整,而不是针对压缩比或与其他类似工具的兼容性。在Intel酷睿i7处理器上,其单核处理数据流的能力达到250M/s-500M/s。Snappy同时针对64位x86处理器进行了优化,在英特尔酷睿i7处理器单一核心实现了至少250MB/s的压缩性能和500MB/ s的解压缩性能。Snappy对于纯文本的压缩率为1.5-1.7,对于HTML是2-4,当然了对于JPEG、PNG和其他已经压缩过的数据压缩率为1.0。谷歌强劲吹捧Snappy的鲁棒性,称其是“即使面对损坏或恶意输入也不会崩溃的设计”,并且在谷歌的生产环境中经过了PB级数据压缩的考验而稳定的。
官方网站:http://code.google.com/p/snappy/

 

FastLZ
FastLZ是一个高效的轻量级压缩解压库,其官方测试数据如下表:
 

几个常用快速无损压缩算法性能比较


1GB文本数据测试:
 

几个常用快速无损压缩算法性能比较

 

官方网站:http://www.quicklz.com/

 

LZO/miniLZO
LZO是一个开源的无损压缩C语言库,其优点是压缩和解压缩比较迅速占用内存小等特点(网络传输希望的是压缩和解压缩速度比较快,压缩率不用很高),其提供了比较全的LZO库和一个精简版的miniLZO库,网上测试数据如下:
测试的时候使用bmp和文本文件,在X86的Linux虚拟机(单核256M内存,Debian 6.0 OS)上测试。

测试文件

原始大小

压缩后大小

压缩率

压缩时间

解压时间

1.bmp     

5292054 

159395

3.01%

9.174ms

23.037ms

2.bmp     

6912056 

33806     

0.489%

8.33ms

36.17ms

3.bmp     

6220856 

5101891 

82%

25.78ms

28.43ms

lzo.tar

6645760 

2457890 

36.98%

34.68ms

38.62ms

kdoc.tar

16660480

6987402

41.93%

102.86ms

108.2ms

kinc.tar

18257920

5684927 

31.13%   

106.87ms

113.86ms


来自《HBase: The Definitive Guide》中的一个对比: 

Algorithm

% remaining

Encoding

Decoding

GZIP

13.4%

21 MB/s

118 MB/s

LZO

20.5%

135 MB/s

410 MB/s

Zippy/Snappy

22.2%

172 MB/s

409 MB/s


                                                                                                                                                                                                                                               
本文转自茄子_2008博客园博客,原文链接:http://www.cnblogs.com/xd502djj/p/4690146.html,如需转载请自行联系原作者。

目录
相关文章
|
3月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
101 1
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
13天前
|
机器学习/深度学习 算法 数据挖掘
提高时钟置换算法的性能
【10月更文挑战第25天】通过上述一种或多种方法的综合应用,可以在不同程度上提高时钟置换算法的性能,使其更好地适应各种复杂的系统环境和应用场景,提高虚拟内存管理的效率和系统的整体性能。
32 5
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
50 9
|
20天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
28 0
|
22天前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
2月前
|
缓存 算法 数据处理
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
在Python算法中,时间与空间复杂度的平衡至关重要。时间复杂度反映算法执行时间随输入规模的变化趋势,空间复杂度则关注额外存储空间的需求。优秀的算法需兼顾两者,如线性搜索时间复杂度为O(n),空间复杂度为O(1);二分查找在时间效率上显著提升至O(log n),空间复杂度保持为O(1);动态规划通过牺牲O(n)空间换取O(n)时间内的高效计算。实际应用中,需根据具体需求权衡,如实时数据处理重视时间效率,而嵌入式系统更关注空间节约。通过不断优化,我们能在Python中找到最佳平衡点,实现高性能程序。
66 3
|
3月前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
94 2
|
4月前
|
存储 缓存 算法
时间&空间复杂度,Python 算法的双重考验!如何优雅地平衡两者,打造极致性能?
【7月更文挑战第23天】在Python算法设计中,时间与空间复杂度是关键考量,需精妙平衡以优化程序性能。时间复杂度反映算法随输入规模增长的执行时间趋势,空间复杂度关注额外存储需求。线性搜索O(n)时间,O(1)空间;二分搜索O(log n)时间,O(1)空间,提升效率;动态规划如斐波那契数列O(n)时间与空间,利用存储减小计算。实际应用需按场景需求调整,如实时数据偏重时间,资源受限环境优先考虑空间。平衡两者,理解算法本质,结合实践,创造高性能程序。
55 7