数学知识:扩展欧几里得算法

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 复习acwing算法基础课的内容,本篇为讲解数学知识:扩展欧几里得算法,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。

文章目录

前言

一、费蜀定理,扩展欧几里得

二、例题,代码

AcWing 877. 扩展欧几里得算法

本题解析

AC代码

AcWing 878. 线性同余方程

本题解析

AC代码

三、时间复杂度


前言

复习acwing算法基础课的内容,本篇为讲解数学知识:扩展欧几里得算法,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、费蜀定理,扩展欧几里得

费蜀定理:对于任意正整数a,b,一定存在非零整数x,y,使得ax + by = gcd(a, b)

扩展欧几里得:求上述的x,y


二、例题,代码

AcWing 877. 扩展欧几里得算法

本题链接:cWing 877. 扩展欧几里得算法

本博客提供本题截图:

image.png

本题解析

关于原理,这里不做解释,想要知道的可以面向百度编程,这里提供扩展欧几里得算法模板,该模板来自:ACWing算法基础课

int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

这里的d还是指的是最大公约数,xy指的就是题目中需要我们去求的值

AC代码

#include <cstdio>
#include <algorithm>
using namespace std;
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        int x, y;
        exgcd(a, b, x, y);
        printf("%d %d\n", x, y);
    }
    return 0;
}

AcWing 878. 线性同余方程

本题链接:AcWing 878. 线性同余方程

本博客提供本题截图:

image.png

本题解析

这里放一张y总的推导过程图:

image.png

可知本题其实还是去用扩展欧几里得算法去求解,只不过本题我们只需要求出来x即可,这里需要知道,只有我们的b是最大公约数gcd(a,m)d的倍数的时候,这里才能是有解的,即b % d == 0,否则一定是无解的

AC代码

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
int main()
{
    int n;
    scanf("%d", &n);
    while (n -- )
    {
        int a, b, m;
        scanf("%d%d%d", &a, &b, &m);
        int x, y;
        int d = exgcd(a, m, x, y);
        if (b % d) puts("impossible");
        else printf("%d\n", (LL)b / d * x % m);
    }
    return 0;
}

三、时间复杂度

关于扩展欧几里得算法各步操作的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

目录
相关文章
|
2天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
20 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
17天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
34 12
|
7月前
|
机器学习/深度学习 算法 搜索推荐
【初阶算法4】——归并排序的详解,及其归并排序的扩展
【初阶算法4】——归并排序的详解,及其归并排序的扩展
【初阶算法4】——归并排序的详解,及其归并排序的扩展
|
4月前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
5月前
【刷题记录】最大公因数,最小公倍数(辗转相除法、欧几里得算法)
【刷题记录】最大公因数,最小公倍数(辗转相除法、欧几里得算法)
|
7月前
|
算法 Java Go
斐波那契数列是一个非常经典的数学问题,在计算机科学中也经常被用作算法设计和分析的例子。
斐波那契数列是一个非常经典的数学问题,在计算机科学中也经常被用作算法设计和分析的例子。
|
6月前
|
算法 安全 网络安全
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
|
8月前
|
算法 数据安全/隐私保护
什么是扩展欧几里得算法?
【5月更文挑战第13天】什么是扩展欧几里得算法?
126 3
|
7月前
|
算法 数据挖掘 定位技术
算法必备数学基础:图论方法由浅入深实践与应用
算法必备数学基础:图论方法由浅入深实践与应用
|
8月前
|
算法
数学算法总结(面积、博弈)
数学算法总结(面积、博弈)

热门文章

最新文章