【Computer Vision】基于VGG-16实现中草药分类

简介: 【Computer Vision】基于VGG-16实现中草药分类,基于百度飞桨开发,参考于《机器学习实践》所作。

【Computer Vision】基于VGG-16实现中草药分类


作者简介:在校大学生一枚,华为云享专家,阿里云星级博主,腾云先锋(TDP)成员,云曦智划项目总负责人,全国高等学校计算机教学与产业实践资源建设专家委员会(TIPCC)志愿者,以及编程爱好者,期待和大家一起学习,一起进步~
.
博客主页ぃ灵彧が的学习日志
.
本文专栏机器学习
.
专栏寄语:若你决定灿烂,山无遮,海无拦
.
在这里插入图片描述

前言

任务描述

如何根据据图像的视觉内容为图像赋予一个语义类别(例如,教室、街道等)是图像场景分类的目标,也是图像检索、图像内容分析和目标识别等问题的基础。但由于图片的尺度、角度、光照等多样性以及场景定义的复杂性,场景分类一直是计算机视觉中的一个挑战性问题。

本实践旨在通过一个美食分类的案列,让大家理解和掌握如何使用飞桨动态图搭建一个卷积神经网络。

特别提示:本实践所用数据集均来自互联网,请勿用于商务用途。


一、中草药分类数据集准备


(一)、参数配置

  1. 导入相关包:
#导入必要的包
import os
import zipfile
import random
import json
import paddle
import sys
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from paddle.io import Dataset
  1. 参数配置
'''
参数配置
'''
train_parameters = {
    "input_size": [3, 224, 224],                              #输入图片的shape
    "class_dim": -1,                                          #分类数
    "src_path":"/home/aistudio/data/data55190/Chinese Medicine.zip",    #原始数据集路径
    "target_path":"/home/aistudio/data/",                     #要解压的路径
    "train_list_path": "/home/aistudio/data/train.txt",       #train.txt路径
    "eval_list_path": "/home/aistudio/data/eval.txt",         #eval.txt路径
    "readme_path": "/home/aistudio/data/readme.json",         #readme.json路径
    "label_dict":{},                                          #标签字典
    "num_epochs": 1,                                         #训练轮数
    "train_batch_size": 8,                                    #训练时每个批次的大小
    "skip_steps": 10,
    "save_steps": 30, 
    "learning_strategy": {                                    #优化函数相关的配置
        "lr": 0.0001                                          #超参数学习率
    },
    "checkpoints": "/home/aistudio/work/checkpoints"          #保存的路径

}

(二)、解压原始数据集



def unzip_data(src_path,target_path):
    '''
    解压原始数据集,将src_path路径下的zip包解压至target_path目录下
    '''
    if(not os.path.isdir(target_path + "Chinese Medicine")):     
        z = zipfile.ZipFile(src_path, 'r')
        z.extractall(path=target_path)
        z.close()

(三)、生成数据列表


def get_data_list(target_path,train_list_path,eval_list_path):
    '''
    生成数据列表
    '''
    #存放所有类别的信息
    class_detail = []
    #获取所有类别保存的文件夹名称
    data_list_path=target_path+"Chinese Medicine/"
    class_dirs = os.listdir(data_list_path)  
    #总的图像数量
    all_class_images = 0
    #存放类别标签
    class_label=0
    #存放类别数目
    class_dim = 0
    #存储要写进eval.txt和train.txt中的内容
    trainer_list=[]
    eval_list=[]
    #读取每个类别,['river', 'lawn','church','ice','desert']
    for class_dir in class_dirs:
        if class_dir != ".DS_Store":
            class_dim += 1
            #每个类别的信息
            class_detail_list = {}
            eval_sum = 0
            trainer_sum = 0
            #统计每个类别有多少张图片
            class_sum = 0
            #获取类别路径 
            path = data_list_path  + class_dir
            # 获取所有图片
            img_paths = os.listdir(path)
            for img_path in img_paths:                                  # 遍历文件夹下的每个图片
                name_path = path + '/' + img_path                       # 每张图片的路径
                if class_sum % 8 == 0:                                  # 每8张图片取一个做验证数据
                    eval_sum += 1                                       # test_sum为测试数据的数目
                    eval_list.append(name_path + "\t%d" % class_label + "\n")
                else:
                    trainer_sum += 1 
                    trainer_list.append(name_path + "\t%d" % class_label + "\n")#trainer_sum测试数据的数目
                class_sum += 1                                          #每类图片的数目
                all_class_images += 1                                   #所有类图片的数目
             
            # 说明的json文件的class_detail数据
            class_detail_list['class_name'] = class_dir             #类别名称
            class_detail_list['class_label'] = class_label          #类别标签
            class_detail_list['class_eval_images'] = eval_sum       #该类数据的测试集数目
            class_detail_list['class_trainer_images'] = trainer_sum #该类数据的训练集数目
            class_detail.append(class_detail_list)  
            #初始化标签列表
            train_parameters['label_dict'][str(class_label)] = class_dir
            class_label += 1 
            
    #初始化分类数
    train_parameters['class_dim'] = class_dim
  
    #乱序  
    random.shuffle(eval_list)
    with open(eval_list_path, 'a') as f:
        for eval_image in eval_list:
            f.write(eval_image) 
            
    random.shuffle(trainer_list)
    with open(train_list_path, 'a') as f2:
        for train_image in trainer_list:
            f2.write(train_image) 

    # 说明的json文件信息
    readjson = {}
    readjson['all_class_name'] = data_list_path                  #文件父目录
    readjson['all_class_images'] = all_class_images
    readjson['class_detail'] = class_detail
    jsons = json.dumps(readjson, sort_keys=True, indent=4, separators=(',', ': '))
    with open(train_parameters['readme_path'],'w') as f:
        f.write(jsons)
    print ('生成数据列表完成!')

(四)、参数初始化


'''
参数初始化
'''
src_path=train_parameters['src_path']
target_path=train_parameters['target_path']
train_list_path=train_parameters['train_list_path']
eval_list_path=train_parameters['eval_list_path']

'''
解压原始数据到指定路径
'''
unzip_data(src_path,target_path)

'''
划分训练集与验证集,乱序,生成数据列表
'''
#每次生成数据列表前,首先清空train.txt和eval.txt
with open(train_list_path, 'w') as f: 
    f.seek(0)
    f.truncate() 
with open(eval_list_path, 'w') as f: 
    f.seek(0)
    f.truncate() 
    
#生成数据列表   
get_data_list(target_path,train_list_path,eval_list_path)

(五)、构造数据读取器

class dataset(Dataset):
    def __init__(self, data_path, mode='train'):
        """
        数据读取器
        :param data_path: 数据集所在路径
        :param mode: train or eval
        """
        super().__init__()
        self.data_path = data_path
        self.img_paths = []
        self.labels = []

        if mode == 'train':
            with open(os.path.join(self.data_path, "train.txt"), "r", encoding="utf-8") as f:
                self.info = f.readlines()
            for img_info in self.info:
                img_path, label = img_info.strip().split('\t')
                self.img_paths.append(img_path)
                self.labels.append(int(label))

        else:
            with open(os.path.join(self.data_path, "eval.txt"), "r", encoding="utf-8") as f:
                self.info = f.readlines()
            for img_info in self.info:
                img_path, label = img_info.strip().split('\t')
                self.img_paths.append(img_path)
                self.labels.append(int(label))


    def __getitem__(self, index):
        """
        获取一组数据
        :param index: 文件索引号
        :return:
        """
        # 第一步打开图像文件并获取label值
        img_path = self.img_paths[index]
        img = Image.open(img_path)
        if img.mode != 'RGB':
            img = img.convert('RGB') 
        img = img.resize((224, 224), Image.BILINEAR)
        img = np.array(img).astype('float32')
        img = img.transpose((2, 0, 1)) / 255
        label = self.labels[index]
        label = np.array([label], dtype="int64")
        return img, label

    def print_sample(self, index: int = 0):
        print("文件名", self.img_paths[index], "\t标签值", self.labels[index])

    def __len__(self):
        return len(self.img_paths)

(六)、数据加载并输出


#训练数据加载
train_dataset = dataset('/home/aistudio/data',mode='train')
train_loader = paddle.io.DataLoader(train_dataset, batch_size=16, shuffle=True)
#测试数据加载
eval_dataset = dataset('/home/aistudio/data',mode='eval')
eval_loader = paddle.io.DataLoader(eval_dataset, batch_size = 8, shuffle=False)
train_dataset.print_sample(200)
print(train_dataset.__len__())
eval_dataset.print_sample(0)
print(eval_dataset.__len__())
print(eval_dataset.__getitem__(10)[0].shape)
print(eval_dataset.__getitem__(10)[1].shape)

输出结果如下图1所示:

在这里插入图片描述


二、模型配置

VGG的核心是五组卷积操作,每两组之间做Max-Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连 接层,之后是分类层。由于每组内卷积层的不同,有11、13、16、19层这几种模型,如下图2所示,展示一个16层的网络结构。

在这里插入图片描述


(一)、卷积+池化

class ConvPool(paddle.nn.Layer):
    '''卷积+池化'''
    def __init__(self,
                 num_channels,
                 num_filters, 
                 filter_size,
                 pool_size,
                 pool_stride,
                 groups,
                 conv_stride=1, 
                 conv_padding=1,
                 ):
        super(ConvPool, self).__init__()  


        for i in range(groups):
            self.add_sublayer(   #添加子层实例
                'bb_%d' % i,
                paddle.nn.Conv2D(         # layer
                in_channels=num_channels, #通道数
                out_channels=num_filters,   #卷积核个数
                kernel_size=filter_size,   #卷积核大小
                stride=conv_stride,        #步长
                padding = conv_padding,    #padding
                )
            )
            self.add_sublayer(
                'relu%d' % i,
                paddle.nn.ReLU()
            )
            num_channels = num_filters
            

        self.add_sublayer(
            'Maxpool',
            paddle.nn.MaxPool2D(
            kernel_size=pool_size,           #池化核大小
            stride=pool_stride               #池化步长
            )
        )

    def forward(self, inputs):
        x = inputs
        for prefix, sub_layer in self.named_children():
            # print(prefix,sub_layer)
            x = sub_layer(x)
        return x
        

(二)、定义卷积神经网络

class VGGNet(paddle.nn.Layer):
  
    def __init__(self):
        super(VGGNet, self).__init__()       
        self.convpool01 = ConvPool(
            3, 64, 3, 2, 2, 2)  #3:通道数,64:卷积核个数,3:卷积核大小,2:池化核大小,2:池化步长,2:连续卷积个数
        self.convpool02 = ConvPool(
            64, 128, 3, 2, 2, 2)
        self.convpool03 = ConvPool(
            128, 256, 3, 2, 2, 3) 
        self.convpool04 = ConvPool(
            256, 512, 3, 2, 2, 3)
        self.convpool05 = ConvPool(
            512, 512, 3, 2, 2, 3)       
        self.pool_5_shape = 512 * 7* 7
        self.fc01 = paddle.nn.Linear(self.pool_5_shape, 4096)
        self.fc02 = paddle.nn.Linear(4096, 4096)
        self.fc03 = paddle.nn.Linear(4096, train_parameters['class_dim'])

    def forward(self, inputs, label=None):
        # print('input_shape:', inputs.shape) #[8, 3, 224, 224]
        """前向计算"""
        out = self.convpool01(inputs) 
        out = self.convpool02(out) 
        out = self.convpool03(out) 
        out = self.convpool04(out) 
        out = self.convpool05(out)      

        out = paddle.reshape(out, shape=[-1, 512*7*7])
        out = self.fc01(out)
        out = self.fc02(out)
        out = self.fc03(out)
        
        if label is not None:
            acc = paddle.metric.accuracy(input=out, label=label)
            return out, acc
        else:
            return out
            
   

三、模型训练

(一)、定义训练函数

def draw_process(title,color,iters,data,label):
    plt.title(title, fontsize=24)
    plt.xlabel("iter", fontsize=20)
    plt.ylabel(label, fontsize=20)
    plt.plot(iters, data,color=color,label=label) 
    plt.legend()
    plt.grid()
    plt.show()
print(train_parameters['class_dim'])
print(train_parameters['label_dict'])

输出结果如下图3所示:

在这里插入图片描述

(二)、模型实例化

model = VGGNet()
model.train()
cross_entropy = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(learning_rate=train_parameters['learning_strategy']['lr'],
                                  parameters=model.parameters()) 

steps = 0
Iters, total_loss, total_acc = [], [], []

for epo in range(train_parameters['num_epochs']):
    for _, data in enumerate(train_loader()):
        steps += 1
        x_data = data[0]
        y_data = data[1]
        predicts, acc = model(x_data, y_data)
        loss = cross_entropy(predicts, y_data)
        loss.backward()
        optimizer.step()
        optimizer.clear_grad()
        if steps % train_parameters["skip_steps"] == 0:
            Iters.append(steps)
            total_loss.append(loss.numpy()[0])
            total_acc.append(acc.numpy()[0])
            #打印中间过程
            print('epo: {}, step: {}, loss is: {}, acc is: {}'\
                  .format(epo, steps, loss.numpy(), acc.numpy()))
        #保存模型参数
        if steps % train_parameters["save_steps"] == 0:
            save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps) + '.pdparams'
            print('save model to: ' + save_path)
            paddle.save(model.state_dict(),save_path)
paddle.save(model.state_dict(),train_parameters["checkpoints"]+"/"+"save_dir_final.pdparams")
draw_process("trainning loss","red",Iters,total_loss,"trainning loss")
draw_process("trainning acc","green",Iters,total_acc,"trainning acc")

输出结果如图4、5、6所示:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


四、模型评估


'''
模型评估
'''
model__state_dict = paddle.load('work/checkpoints/save_dir_final.pdparams')
model_eval = VGGNet()
model_eval.set_state_dict(model__state_dict) 
model_eval.eval()
accs = []

for _, data in enumerate(eval_loader()):
    x_data = data[0]
    y_data = data[1]
    predicts = model_eval(x_data)
    acc = paddle.metric.accuracy(predicts, y_data)
    accs.append(acc.numpy()[0])
print('模型在验证集上的准确率为:',np.mean(accs))

输出结果如下图7所示:

在这里插入图片描述


五、模型预测

(一)、数据集处理

def unzip_infer_data(src_path,target_path):
    '''
    解压预测数据集
    '''
    if(not os.path.isdir(target_path + "Chinese Medicine Infer")):     
        z = zipfile.ZipFile(src_path, 'r')
        z.extractall(path=target_path)
        z.close()


def load_image(img_path):
    '''
    预测图片预处理
    '''
    img = Image.open(img_path) 
    if img.mode != 'RGB': 
        img = img.convert('RGB') 
    img = img.resize((224, 224), Image.BILINEAR)
    img = np.array(img).astype('float32') 
    img = img.transpose((2, 0, 1)) / 255 # HWC to CHW 及归一化
    return img


infer_src_path = '/home/aistudio/data/data55194/Chinese Medicine Infer.zip'
infer_dst_path = '/home/aistudio/data/'
unzip_infer_data(infer_src_path,infer_dst_path)

label_dic = train_parameters['label_dict']

(二)、预测评估


model__state_dict = paddle.load('work/checkpoints/save_dir_final.pdparams')
model_predict = VGGNet()
model_predict.set_state_dict(model__state_dict) 
model_predict.eval()
infer_imgs_path = os.listdir(infer_dst_path+"Chinese Medicine Infer")
print(infer_imgs_path)
for infer_img_path in infer_imgs_path:
    infer_img = load_image(infer_dst_path+"Chinese Medicine Infer/"+infer_img_path)
    infer_img = infer_img[np.newaxis,:, : ,:]  #reshape(-1,3,224,224)
    infer_img = paddle.to_tensor(infer_img)
    result = model_predict(infer_img)
    lab = np.argmax(result.numpy())
    print("样本: {},被预测为:{}".format(infer_img_path,label_dic[str(lab)]))

输出结果如下图8所示:

在这里插入图片描述


总结

本系列文章内容为根据清华社出版的《机器学习实践》所作的相关笔记和感悟,其中代码均为基于百度飞桨开发,若有任何侵权和不妥之处,请私信于我,定积极配合处理,看到必回!!!

最后,引用本次活动的一句话,来作为文章的结语~( ̄▽ ̄~)~:

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。

在这里插入图片描述

相关文章
|
机器学习/深度学习 编解码 自然语言处理
Vision Transformer 必读系列之图像分类综述(二): Attention-based(上)
Transformer 结构是 Google 在 2017 年为解决机器翻译任务(例如英文翻译为中文)而提出,从题目中可以看出主要是靠 Attention 注意力机制,其最大特点是抛弃了传统的 CNN 和 RNN,整个网络结构完全是由 Attention 机制组成。为此需要先解释何为注意力机制,然后再分析模型结构。
793 0
Vision Transformer 必读系列之图像分类综述(二): Attention-based(上)
|
1月前
|
机器学习/深度学习 人工智能 文件存储
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
本文介绍了一种名为HyperSegNAS的新方法,该方法结合了一次性神经架构搜索(NAS)与3D医学图像分割,旨在解决传统NAS方法在3D医学图像分割中计算成本高、搜索时间长的问题。HyperSegNAS通过引入HyperNet来优化超级网络的训练,能够在保持高性能的同时,快速找到适合不同计算约束条件的最优网络架构。该方法在医疗分割十项全能(MSD)挑战的多个任务中展现了卓越的性能,特别是在胰腺数据集上的表现尤为突出。
20 0
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
|
3月前
|
机器学习/深度学习 PyTorch 语音技术
【文献学习】Conformer: Convolution-augmented Transformer for Speech Recognition
文章介绍了Conformer模型,这是一种结合了Transformer的自注意力机制和CNN卷积模块的混合模型,旨在提高语音识别任务的性能,通过自注意力捕捉全局上下文信息,同时利用卷积模块有效捕获局部特征。
74 0
|
机器学习/深度学习 算法 数据可视化
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
 过去几年,在经典数据集PASCAL上,物体检测的效果已经达到 一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上 下文环境的复杂集成系统。在这篇论文里,我们提出了一种简单并且 可扩展的检测算法,可以在VOC2012最好结果的基础上将mAP值提 高30%以上——达到了53.3%。
161 0
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
|
机器学习/深度学习 编解码 自然语言处理
Swin Transformer Hierarchical Vision Transformer using Shifted Windows论文解读
本文提出了一种新的Vision Transformer,称为Swin Transformer,它能够作为计算机视觉的通用骨干网络。将Transformer从语言转化为视觉的挑战来自于两个领域之间的差异
233 0
|
机器学习/深度学习 编解码 数据挖掘
深度学习论文阅读图像分类篇(三):VGGNet《Very Deep Convolutional Networks for Large-Scale Image Recognition》
在这项工作中,我们研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到 16-19 加权层可以实现对现有技术配置的显著改进。这些发现是我们的 ImageNet Challenge 2014 提交论文的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还表明,我们的表示对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。
211 0
|
机器学习/深度学习 大数据
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
145 0
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
|
机器学习/深度学习 自然语言处理 数据挖掘
【文本分类】A C-LSTM Neural Network for Text Classification
【文本分类】A C-LSTM Neural Network for Text Classification
147 0
【文本分类】A C-LSTM Neural Network for Text Classification
|
机器学习/深度学习 数据挖掘
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
197 0
【文本分类】ACT: an Attentive Convolutional Transformer for Efficient Text Classification
|
机器学习/深度学习 缓存 API
【Computer Vision】基于ResNet-50实现CIFAR10数据集分类
【Computer Vision】基于ResNet-50实现CIFAR10数据集分类,基于百度飞桨开发,参考于《机器学习实践》所作。
419 1
【Computer Vision】基于ResNet-50实现CIFAR10数据集分类