CUDA streamCUDA流的基本概念

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
简介: CUDA streamCUDA流的基本概念

一、Stream的概念

用到CUDA的程序一般需要处理海量的数据,内存带宽经常会成为主要的瓶颈。在Stream的帮助下,CUDA程序可以有效地将内存读取和数值运算并行,从而提升数据的吞吐量。

Cuda stream是指一堆异步的cuda操作,他们按照host代码调用的顺序执行在device上。

典型的cuda编程模式我们已经熟知了:

· 将输入数据从host转移到device

· 在device上执行kernel

· 将结果从device上转移回host

Cuda Streams

所有的cuda操作(包括kernel执行和数据传输)都显式或隐式的运行在stream中,stream也就两种类型,分别是:

· 隐式声明stream(NULL stream)

· 显示声明stream(non-NULL stream)

异步且基于stream的kernel执行和数据传输能够实现以下几种类型的并行:

· Host运算操作和device运算操作并行

· Host运算操作和host到device的数据传输并行

· Host到device的数据传输和device运算操作并行

· Device内的运算并行

二、Stream的使用

由于GPU和CPU不能直接读取对方的内存,CUDA程序一般会有一下三个步骤:1)将数据从CPU内存转移到GPU内存(HtoD),2)GPU进行运算并将结果保存在GPU内存(DtoD),3)将结果从GPU内存拷贝到CPU内存(DtoH)。

如果不做特别处理,那么CUDA会默认只使用一个Stream(Default Stream)。在这种情况下,刚刚提到的三个步骤就如菊花链般蛋疼地串联,必须等一步完成了才能进行下一步。是不是很别扭?

NVIDIA家的GPU有一下很不错的技能(不知道是不是独有):

数据拷贝和数值计算可以同时进行。

两个方向的拷贝可以同时进行(GPU到CPU,和CPU到GPU),数据如同行驶在双向快车道。

但同时,这数据和计算的并行也有一点合乎逻辑的限制:进行数值计算的kernel不能读写正在被拷贝的数据。

Stream正是帮助我们实现以上两个并行的重要工具。基本的概念是:

将数据拆分称许多块,每一块交给一个Stream来处理。

每一个Stream包含了三个步骤:1)将属于该Stream的数据从CPU内存转移到GPU内存,2)GPU进行运算并将结果保存在GPU内存,3)将该Stream的结果从GPU内存拷贝到CPU内存。

所有的Stream被同时启动,由GPU的scheduler决定如何并行。

在这样的骚操作下,假设我们把数据分成A,B两块,各由一个Stream来处理。A的数值计算可以和B的数据传输同时进行,而A与B的数据传输也可以同时进行。由于第一个Stream只用到了数据A,而第二个Stream只用到了数据B,“进行数值计算的kernel不能读写正在被拷贝的数据”这一限制并没有被违反。效果如下:

下图表示数据在CPU内存与GPU内存转移的起始时间、持续时间、使用的GPU、CUDA流的名称

三、总结

使用多个Stream令数据传输和计算并行,可比只用Default Stream增加相当多的吞吐量。在需要处理海量数据,Stream是一个十分重要的工具。

相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
目录
相关文章
|
并行计算 异构计算
CUDA stream利用CUDA流重叠计
CUDA stream利用CUDA流重叠计
614 0
CUDA stream利用CUDA流重叠计
|
9月前
|
并行计算 TensorFlow 调度
推荐场景GPU优化的探索与实践:CUDA Graph与多流并行的比较与分析
RTP 系统(即 Rank Service),是一个面向搜索和推荐的 ranking 需求,支持多种模型的在线 inference 服务,是阿里智能引擎团队沉淀多年的技术产品。今年,团队在推荐场景的GPU性能优化上又做了新尝试——在RTP上集成了Multi Stream,改变了TensorFlow的单流机制,让多流的执行并行,作为增加GPU并行度的另一种选择。本文详细介绍与比较了CUDA Graph与多流并行这两个方案,以及团队的实践成果与心得。
|
9月前
|
人工智能 弹性计算 并行计算
技术改变AI发展:CUDA Graph优化的底层原理分析(GPU底层技术系列一)
随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。CUDA是一种并行计算平台和编程模型,由Nvidia推出,可利用GPU的强大处理能力进行加速计算。
104583 1
|
存储 并行计算 算法
初识CUDA网格与线程块
初识CUDA网格与线程块
692 0
初识CUDA网格与线程块
|
并行计算 Linux C++
Linux上C++与CUDA混合编程
Linux上C++与CUDA混合编程
|
机器学习/深度学习 存储 并行计算
一篇就够:高性能推理引擎理论与实践 (TensorRT)
本文分享了关于 NVIDIA 推出的高性能的深度学习推理引擎 TensorRT 的背后理论知识和实践操作指南。
11834 9
一篇就够:高性能推理引擎理论与实践 (TensorRT)
|
并行计算 算法
CUDA 的块间同步方法
CUDA 的块间同步方法
1225 0
|
并行计算
CUDA stream默认流与非默认流
CUDA stream默认流与非默认流
412 0
CUDA stream默认流与非默认流
|
机器学习/深度学习 并行计算 算法框架/工具
如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL?
NCCL在不同的深度学习框架(CNTK/Tensorflow/Torch/Theano/Caffe)中,由于不同的模型大小,计算的batch size大小,会有不同的表现。比如上图中CNTK中Resnet50能达到32卡线性加速比
4050 0

热门文章

最新文章