CUDA 异步执行模型
对于GPU运算集中的AI应用场景,为了提升系统的性能,最大化地利用GPU资源是一个重要的优化方向。比较常用的方式是尽量将GPU运算转换为异步操作,CPU侧负责任务提交,保证有足够的cuda kernel发送到GPU,GPU按照CUDA Stream流队列中的Kernel顺序执行。只要这中间不存在同步操作,GPU完全可以不用等待,顺序地将所有的kernel执行完,然后再通知CPU。CPU运算和GPU运算是相互独立的协作关系。
以上的模型是一个理想化的状态,听起来合乎逻辑,而且很完美。大致的运行效果如图1。可以看到CPU通过CUDA API已经将Kernel提前准备好,GPU的任务一个接一个。GPU的利用率也比较高。
图1 GPU异步执行的典型场景
对于一般的性能优化,达到这种状态已经很好了。但如果想进一步的优化就需要知道模型的实际运行情况。随着GPU算力的提升,计算任务的执行时间在慢慢缩小,一个GPU执行单元可能在us或者ms级完成。通常情况下一个好的AI运算框架或模型应该尽量让GPU Kernel的运算时间长一些,从而使得GPU的性能能够更好地发挥,因为有个事实是:GPU Kernel提交到硬件也是有开销的,虽然这个时间可能只有0.x us。这里的提交不是指的cudaLaunchKernel而是更底层驱动和硬件之间的真正的提交。如果业务场景中有很多小的us级Kernel要执行,则整个系统的性能会随着短Kernel的比例增加整体性能输出越来越差,GPU资源并不能充分利用起来。
CUDA Graph 性能优化效果
CUDA Graph可以通过Capture或Create的方式将多个Kernel组合在一起生成一个Graph,与Kernel融合不同,在Graph内部仍然是多个Kernel的形式存在,但提交操作只需要一次,如果可以将尽量多的Kernel组合在一起,那么理论上可以节约很多Kernel提交的开销。但CUDA Graph也有其自身的限制,它的设计思路是将多个任务单元作为一个快照进行组合,也就意味着这个快照的参数和结构组成是固定的,不能变换,同时实例化这个快照是比较耗时的,但如果这个快照被反复执行(replay)的次数足够多,实例化快照的时间是可以忽略的。
以一个简单的Kernel为例介绍CUDA Graph是如何影响性能输出的。这里需要自己开发构造一个Kernel:可以根据运算复杂度调整执行时间,但在运行过程中没有Host与Device侧的数据交互。以下分析均基于这个自定义Kernel进行。通过对比CUDA Graph优化前后的性能数据(图2)可以看到CUDA Graph对于执行时间越小的Kernel性能提升越明显,原因是Kernel提交的开销占比会更大(假设单次提交的开销是固定的,接下来会证明这一假设)。
图2. 不同执行时间kernel CUDA Graph优化后性能提升对照表
CUDA Graph 性能优化原理
为什么Kernel的提交会有系统开销并最终影响到GPU卡的性能输出?从图1的GPU异步执行逻辑来看,GPU完全可以按照CUDA Stream的队列顺序自己控制Kernel的执行节奏,只要队列中的任务足够,就能输出最大的性能。Kernel提交的开销究竟在哪里?图3 可以有一个侧面的解释。在Kernel的执行过程中是有持续的双向数据流量的。而且这个流量和Kernel的执行时间是成反比的。这是个很重要的信息,因为Kernel执行过程中是没有运算数据流量的,HostToDevice的流量就是CPU侧Kernel提交产生的,DeviceToHost的流量就是GPU执行完Kernel需要和Host交互产生的。而且这个流量是和Kernel的提交频率有关,和Kernel本身并没有关系。
图3. 不同执行时间kernel对应的GPU流量对照表
进一步研究Kernel提交究竟会有多大的数据流量,图4 做了一个展示,单次Kernel的提交产生数据流量大约在1KB,GPU执行与Host同步的数据量大约在0.22KB,而且从统计结果看与Kernel的大小无关。这也可以证明前面的假设:Kernel的提交开销总体上是固定的。
图4. 不同Kernel单次提交产生的数据流量对照表
CUDA Graph引入分析总结
1.cuda kernel在执行时存在确定的Host和Device侧交互
2.交互的频率或流量与cuda kernel的提交频率有关,与cuda kernel大小无关
3.CUDA Graph通过组合Kernel的方式可以将Kernel提交频率大幅降低,提高GPU的性能输出,但对于执行时间长的Kernel性能优化不明显。
4.对于Host与Device端延时明显的场景,这种优化都是有益的。因为这个Kernel的提交开销本质上就是H2D 延时的开销,延时越小Kernel提交的效率就越高。
5.对于物理机为了能够得到极致的性能可以尽量减少中间PCIe Switch的级数,因为每一级的switch引入RTT延时大约在0.3us,我们目前使用的GPU Box机型普遍有2级Switch,引入RTT延时在0.6us。如果是采用gn7i的机型,GPU卡直连PCIe Root Complex,这0.6us是完全没有的,性能表现在小Kernel占比较高的场景中会更优越。
我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8
【扫码填写上方调研问卷】
欢迎每位来到弹性计算的开发者们来反馈问题哦~