SQL调优指南—SQL调优进阶—JOIN优化和执行

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文主要介绍如何使用JOIN。JOIN将多个表以某个或某些列为条件进行连接操作而检索出关联数据的过程,多个表之间以共同列而关联在一起。

基本概念

JOIN是SQL查询中常见的操作,逻辑上说,它的语义等价于将两张表做笛卡尔积,然后根据过滤条件保留满足条件的数据。JOIN多数情况下是依赖等值条件做的JOIN,即Equi-Join,用来根据某个特定列的值连接两张表的数据。

子查询是指嵌套在SQL内部的查询块,子查询的结果作为输入,填入到外层查询中,从而用于计算外层查询的结果。子查询可以出现在SQL语句的很多地方,比如在SELECT子句中作为输出的数据,在FROM子句中作为输入的一个视图,在WHERE子句中作为过滤条件等。

本文讨论的均为不下推的JOIN算子。如果JOIN被下推到LogicalView中,其执行方式由存储层MySQL自行选择。

JOIN类型

PolarDB-X支持Inner Join,Left Outer Join和Right Outer Join这3种常见的JOIN类型。2.5.png下面是几种不同类型JOIN示例:


/* Inner Join */
SELECT * FROM A, B WHERE A.key = B.key;
/* Left Outer Join */
SELECT * FROM A LEFT JOIN B ON A.key = B.key;
/* Right Outer Join */
SELECT * FROM A RIGHT OUTER JOIN B ON A.key = B.key;

还支持Semi-Join和Anti-Join。Semi Join和Anti Join无法直接用SQL语句来表示,通常由包含关联项的EXISTS或IN子查询转换得到。如下为Semi-Join和Anti-Join的示例。


/* Semi Join - 1 */

SELECT * FROM Emp WHERE Emp.DeptName IN (
SELECT DeptName FROM Dept
)
/ Semi Join - 2 /
SELECT * FROM Emp WHERE EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)
/ Anti Join - 1 /
SELECT * FROM Emp WHERE Emp.DeptName NOT IN (
SELECT DeptName FROM Dept
)
/ Anti Join - 2 /
SELECT * FROM Emp WHERE NOT EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)

JOIN算法

目前,PolarDB-X支持Nested-Loop Join、Hash Join、Sort-Merge Join和Lookup Join(BKAJoin)等JOIN算法。

Nested-Loop Join (NLJoin)

Nested-Loop Join通常用于非等值的JOIN。它的工作方式如下:

  1. 拉取内表(右表,通常是数据量较小的一边)的全部数据,缓存到内存中。
  2. 遍历外表数据,对于外表的每行:
    • 对于每一条缓存在内存中的内表数据。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  1. 如下为Nested-Loop Join示例:
> EXPLAIN SELECT * FROM partsupp, supplier WHERE ps_suppkey < s_suppkey;
NlJoin(condition="ps_suppkey < s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

通常来说,Nested-Loop Join是效率最低的JOIN操作,一般只有在JOIN条件不含等值(例如上面的例子)或者内表数据量极小的情况下才会使用。通过如下Hint可以强制PolarDB-X使用Nested-Loop Join以及确定JOIN顺序:


/+TDDL:NL_JOIN(outer_table, inner_table)/ SELECT ...

其中inner_table 和outer_table也可以是多张表的JOIN结果,例如:


/+TDDL:NL_JOIN((outer_table_a, outer_table_b), (inner_table_c, inner_table_d))/ SELECT ...

Hash Join

Hash Join是等值JOIN最常用的算法之一。它的原理如下所示:

  • 拉取内表(右表,通常是数据量较小的一边)的全部数据,写进内存中的哈希表。
  • 遍历外表数据,对于外表的每行:
    • 根据等值条件JOIN Key查询哈希表,取出0-N匹配的行(JOIN Key相同)。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  • Hash Join示例:
> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey;
HashJoin(condition="ps_suppkey = s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

Hash Join常出现在JOIN数据量较大的复杂查询、且无法通过索引Lookup来改善,这种情况下Hash Join是最优的选择。例如上面的例子中,partsupp表和supplier表均为全表扫描,数据量较大,适合使用HashJoin。由于Hash Join的内表需要用于构造内存中的哈希表,内表的数据量一般小于外表。通常优化器可以自动选择出最优的JOIN顺序。如果需要手动控制,也可以通过下面的Hint。

通过如下Hint可以强制PolarDB-X使用Hash Join以及确定JOIN顺序:


/+TDDL:HASH_JOIN(table_outer, table_inner)/ SELECT ...

Lookup Join (BKAJoin)

Lookup Join是另一种常用的等值JOIN算法,常用于数据量较小的情况。它的原理如下:

  1. 遍历外表(左表,通常是数据量较小的一边)数据,对于外表中的每批(例如1000行)数据。
  2. 将这一批数据的JOIN Key拼成一个IN (....)条件,加到内表的查询中。
  3. 执行内表查询,得到JOIN匹配的行。
  4. 借助哈希表,为外表的每行找到匹配的内表行,组合并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey AND ps_partkey = 123;
BKAJoin(condition="ps_suppkey = s_suppkey", type="inner")
LogicalView(tables="partsupp_3", sql="SELECT * FROM `partsupp` AS `partsupp` WHERE (`ps_partkey` = ?)")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` WHERE (`s_suppkey` IN ('?'))")

Lookup Join通常用于外表数据量较小的情况,例如上面的例子中,左表partsupp由于存在ps_partkey = 123的过滤条件,仅有几行数据。此外,右表的s_suppkey IN ( ... )查询命中了主键索引,这也使得Lookup Join的查询代价进一步降低。

通过如下Hint可以强制PolarDB-X使用LookupJoin以及确定JOIN顺序:


/+TDDL:BKA_JOIN(table_outer, table_inner)/ SELECT ...


说明 Lookup Join的内表只能是单张表,不可以是多张表JOIN的结果。

Sort-Merge Join

Sort-Merge Join是另一种等值JOIN算法,它依赖左右两边输入的顺序,必须按JOIN Key排序。它的原理如下:

  1. 开始Sort-Merge Join之前,输入端必须排序(借助MergeSort或MemSort)。
  2. 比较当前左右表输入的行,并按以下方式操作,不断消费左右两边的输入:
    • 如果左表的JOIN Key较小,则消费左表的下一条数据。
    • 如果右表的JOIN Key较小,则消费右表的下一条数据。
    • 如果左右表JOIN Key相等,说明获得了1条或多条匹配,检查是否满足JOIN条件并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey ORDER BY s_suppkey;
SortMergeJoin(condition="ps_suppkey = s_suppkey", type="inner")
MergeSort(sort="ps_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp` ORDER BY `ps_suppkey`")
MergeSort(sort="s_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` ORDER BY `s_suppkey`")

上面执行计划中的 MergeSort算子以及下推的ORDER BY,这保证了Sort-Merge Join两边的输入按JOIN Key即s_suppkey (ps_suppkey)排序。

Sort-Merge Join由于需要额外的排序步骤,通常Sort-Merge Join并不是最优的。但是,某些情况下客户端查询恰好也需要按JOIN Key排序(上面的例子),这时候使用Sort-Merge Join是较优的选择。

通过如下Hint可以强制PolarDB-X使用Sort-Merge Join


/+TDDL:SORT_MERGE_JOIN(table_a, table_b)/ SELECT ...

JOIN顺序

在多表连接的场景中,优化器的一个很重要的任务是决定各个表之间的连接顺序,因为不同的连接顺序会影响中间结果集的大小,进而影响到计划整体的执行代价。

例如,对于4张表JOIN(暂不考虑下推的情形),JOIN Tree可以有如下3种形式,同时表的排列又有4! = 24种,一共有72种可能的JOIN顺序。3.2.png

下面是几种不同类型JOIN示例:


/ Inner Join */
SELECT * FROM A, B WHERE A.key = B.key;
/ Left Outer Join /
SELECT * FROM A LEFT JOIN B ON A.key = B.key;
/ Right Outer Join /
SELECT FROM A RIGHT OUTER JOIN B ON A.key = B.key;

还支持Semi-Join和Anti-Join。Semi Join和Anti Join无法直接用SQL语句来表示,通常由包含关联项的EXISTS或IN子查询转换得到。如下为Semi-Join和Anti-Join的示例。


/ Semi Join - 1 */
SELECT * FROM Emp WHERE Emp.DeptName IN (
SELECT DeptName FROM Dept
)
/ Semi Join - 2 /
SELECT * FROM Emp WHERE EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)
/ Anti Join - 1 /
SELECT * FROM Emp WHERE Emp.DeptName NOT IN (
SELECT DeptName FROM Dept
)
/ Anti Join - 2 /
SELECT * FROM Emp WHERE NOT EXISTS (
SELECT * FROM Dept WHERE Emp.DeptName = Dept.DeptName
)

JOIN算法

目前,PolarDB-X支持Nested-Loop Join、Hash Join、Sort-Merge Join和Lookup Join(BKAJoin)等JOIN算法。

Nested-Loop Join (NLJoin)

Nested-Loop Join通常用于非等值的JOIN。它的工作方式如下:

  1. 拉取内表(右表,通常是数据量较小的一边)的全部数据,缓存到内存中。
  2. 遍历外表数据,对于外表的每行:
    • 对于每一条缓存在内存中的内表数据。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  1. 如下为Nested-Loop Join示例:
> EXPLAIN SELECT * FROM partsupp, supplier WHERE ps_suppkey < s_suppkey;
NlJoin(condition="ps_suppkey < s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

通常来说,Nested-Loop Join是效率最低的JOIN操作,一般只有在JOIN条件不含等值(例如上面的例子)或者内表数据量极小的情况下才会使用。通过如下Hint可以强制PolarDB-X使用Nested-Loop Join以及确定JOIN顺序:


/+TDDL:NL_JOIN(outer_table, inner_table)/ SELECT ...

其中inner_table 和outer_table也可以是多张表的JOIN结果,例如:


/+TDDL:NL_JOIN((outer_table_a, outer_table_b), (inner_table_c, inner_table_d))/ SELECT ...

Hash Join

Hash Join是等值JOIN最常用的算法之一。它的原理如下所示:

  • 拉取内表(右表,通常是数据量较小的一边)的全部数据,写进内存中的哈希表。
  • 遍历外表数据,对于外表的每行:
    • 根据等值条件JOIN Key查询哈希表,取出0-N匹配的行(JOIN Key相同)。
    • 构造结果行,并检查是否满足JOIN条件,如果满足条件则输出。
  • Hash Join示例:
> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey;
HashJoin(condition="ps_suppkey = s_suppkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp`")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier`")

Hash Join常出现在JOIN数据量较大的复杂查询、且无法通过索引Lookup来改善,这种情况下Hash Join是最优的选择。例如上面的例子中,partsupp表和supplier表均为全表扫描,数据量较大,适合使用HashJoin。由于Hash Join的内表需要用于构造内存中的哈希表,内表的数据量一般小于外表。通常优化器可以自动选择出最优的JOIN顺序。如果需要手动控制,也可以通过下面的Hint。

通过如下Hint可以强制PolarDB-X使用Hash Join以及确定JOIN顺序:


/+TDDL:HASH_JOIN(table_outer, table_inner)/ SELECT ...

Lookup Join (BKAJoin)

Lookup Join是另一种常用的等值JOIN算法,常用于数据量较小的情况。它的原理如下:

  1. 遍历外表(左表,通常是数据量较小的一边)数据,对于外表中的每批(例如1000行)数据。
  2. 将这一批数据的JOIN Key拼成一个IN (....)条件,加到内表的查询中。
  3. 执行内表查询,得到JOIN匹配的行。
  4. 借助哈希表,为外表的每行找到匹配的内表行,组合并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey AND ps_partkey = 123;
BKAJoin(condition="ps_suppkey = s_suppkey", type="inner")
LogicalView(tables="partsupp_3", sql="SELECT * FROM `partsupp` AS `partsupp` WHERE (`ps_partkey` = ?)")
Gather(concurrent=true)
LogicalView(tables="supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` WHERE (`s_suppkey` IN ('?'))")

Lookup Join通常用于外表数据量较小的情况,例如上面的例子中,左表partsupp由于存在ps_partkey = 123的过滤条件,仅有几行数据。此外,右表的s_suppkey IN ( ... )查询命中了主键索引,这也使得Lookup Join的查询代价进一步降低。

通过如下Hint可以强制PolarDB-X使用LookupJoin以及确定JOIN顺序:


/+TDDL:BKA_JOIN(table_outer, table_inner)/ SELECT ...


说明 Lookup Join的内表只能是单张表,不可以是多张表JOIN的结果。

Sort-Merge Join

Sort-Merge Join是另一种等值JOIN算法,它依赖左右两边输入的顺序,必须按JOIN Key排序。它的原理如下:

  1. 开始Sort-Merge Join之前,输入端必须排序(借助MergeSort或MemSort)。
  2. 比较当前左右表输入的行,并按以下方式操作,不断消费左右两边的输入:
    • 如果左表的JOIN Key较小,则消费左表的下一条数据。
    • 如果右表的JOIN Key较小,则消费右表的下一条数据。
    • 如果左右表JOIN Key相等,说明获得了1条或多条匹配,检查是否满足JOIN条件并输出。

Lookup Join (BKAJoin)示例:


> EXPLAIN SELECT  FROM partsupp, supplier WHERE ps_suppkey = s_suppkey ORDER BY s_suppkey;
SortMergeJoin(condition="ps_suppkey = s_suppkey", type="inner")
MergeSort(sort="ps_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.partsupp_[0-7]", shardCount=8, sql="SELECT * FROM `partsupp` AS `partsupp` ORDER BY `ps_suppkey`")
MergeSort(sort="s_suppkey ASC")
LogicalView(tables="QIMU_0000_GROUP,QIMU_0001_GROUP.supplier_[0-7]", shardCount=8, sql="SELECT FROM `supplier` AS `supplier` ORDER BY `s_suppkey`")

上面执行计划中的 MergeSort算子以及下推的ORDER BY,这保证了Sort-Merge Join两边的输入按JOIN Key即s_suppkey (ps_suppkey)排序。

Sort-Merge Join由于需要额外的排序步骤,通常Sort-Merge Join并不是最优的。但是,某些情况下客户端查询恰好也需要按JOIN Key排序(上面的例子),这时候使用Sort-Merge Join是较优的选择。

通过如下Hint可以强制PolarDB-X使用Sort-Merge Join


/+TDDL:SORT_MERGE_JOIN(table_a, table_b)*/ SELECT ...

JOIN顺序

在多表连接的场景中,优化器的一个很重要的任务是决定各个表之间的连接顺序,因为不同的连接顺序会影响中间结果集的大小,进而影响到计划整体的执行代价。

例如,对于4张表JOIN(暂不考虑下推的情形),JOIN Tree可以有如下3种形式,同时表的排列又有4! = 24种,一共有72种可能的JOIN顺序。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
6月前
|
前端开发 开发工具 git
Git 标签(Tag)实战:打标签和删除标签的步骤指南
Git 标签(Tag)实战:打标签和删除标签的步骤指南
|
XML Java 数据格式
肝了30天总结,史上最全面透彻的Spring核心原理分析和27道高频面试题
在阅读面试题之前,小伙伴们可以先看看我之前发布的系列文章,Spring核心原理包括源码分析和用30个类手写。面试刷题固然很重要,但是知其然知其所以然更重要。
1529 4
肝了30天总结,史上最全面透彻的Spring核心原理分析和27道高频面试题
|
5月前
|
Java 应用服务中间件 开发者
【实战指南】Java Socket编程:构建高效的客户端-服务器通信
【6月更文挑战第21天】Java Socket编程用于构建客户端-服务器通信。`Socket`和`ServerSocket`类分别处理两端的连接。实战案例展示了一个简单的聊天应用,服务器监听端口,接收客户端连接,并使用多线程处理每个客户端消息。客户端连接服务器,发送并接收消息。了解这些基础,加上错误处理和优化,能帮你开始构建高效网络应用。
414 10
|
4月前
|
机器学习/深度学习 数据采集 算法
探索机器学习在金融风控中的应用
本文深入探讨了机器学习技术在金融风险控制领域的应用与挑战。通过分析当前金融市场的风险类型及传统风控方法的局限性,本文详细阐述了如何利用机器学习算法提升风控效率和准确性。文中不仅分享了机器学习模型在实际风控场景中的成功案例,还讨论了实施过程中可能遇到的技术挑战和策略选择问题。最后,本文对机器学习在金融风控领域的未来发展趋势进行了展望,旨在为金融科技从业者提供有价值的参考。
85 2
|
SQL Java 数据库连接
深入理解 JDBC:Java 数据库连接详解
数据库是现代应用程序的核心组成部分之一。无论是 Web 应用、移动应用还是桌面应用,几乎都需要与数据库交互以存储和检索数据。Java 提供了一种强大的方式来实现与数据库的交互,即 JDBC(Java 数据库连接)。本文将深入探讨 JDBC 的各个方面,从基本概念到实际编程示例,以帮助您理解和使用 JDBC。
740 2
|
数据采集 存储 JSON
【一文读不懂Jsoncpp】3.序列化和反序列化
【一文读不懂Jsoncpp】3.序列化和反序列化
189 0
|
SQL 存储 缓存
SQL调优指南—SQL调优进阶—JOIN优化和执行
本文主要介绍如何使用JOIN。JOIN将多个表以某个或某些列为条件进行连接操作而检索出关联数据的过程,多个表之间以共同列而关联在一起。
143 0
SQL调优指南—SQL调优进阶—JOIN优化和执行
|
6月前
|
SQL 关系型数据库 MySQL
一文带你了解MySQL的DDL语句
一文带你了解MySQL的DDL语句
390 1
|
SQL 存储 算法
SQL调优指南—SQL调优进阶—排序优化和执行
本文介绍如何排序(Order-by)算子,以达到减少数据传输量和提高执行效率的效果。
145 0
|
6月前
|
负载均衡 API 微服务
深入浅出:使用Python构建微服务架构
本文旨在为读者提供一个清晰、易懂的指南,介绍如何使用Python语言构建微服务架构。微服务架构作为一种现代软件开发实践,能够提高大型应用的可维护性和可扩展性。通过本文,我们将探索微服务的基本概念、优势以及如何利用Python的强大生态系统进行微服务的设计与实现。我们会通过一个简单实例,演示从零开始构建微服务的全过程,包括服务的划分、通信机制、以及如何利用容器技术(如Docker)进行部署。此外,文章还将讨论在微服务架构下的常见挑战和最佳实践,旨在为读者提供一份全面而深入的实用指南。
下一篇
无影云桌面