Python自动化办公系列01-对excel表格数据进行可视化分析

简介: 查理·芒格曾说过这样一番话:我不断地看到有些人在生活中越过越好,他们不是最聪明的,甚至不是最勤奋的,但他们是学习机器,他们每天夜里睡觉时都比那天早晨聪明一点点。优秀的人之所以能成为人中翘楚,往往就是因为他们是学习机器,能做到持续学习,不断地自我精进和迭代,一点点地进步和成长,将大多数人甩在身后。反过来,一些人之所以往后退,最本质的原因,还不是因为无法做到持续学习和成长,以至于不管是业务能力,还是眼界、格局,在方方面面都落后于人。 这就是优秀和平庸之间存在巨大差距的原因所在。成功的秘诀,说复杂也没那么复杂,其实就是成长,不断地成长,当你能做到比昨天更好,比身边的人更好,那么你想不成功都难

实战

安装模块 pip install openpyxl

第一步:创建表格及工作表

from openpyxl import Workbook

# 创建一个表格
wb = Workbook()
# 创建工作表
one = wb.create_sheet('娃哈哈')
two = wb.create_sheet('旺仔')
wb.create_sheet('牛奶')
three = wb.create_sheet('Tony老师')
wb.create_sheet('在上课')
# 保存
wb.save('西游记.xlsx')

image.png

第二步:添加表格数据

# 添加一个值   单元格  
one.cell(row=15,column=1,value='老师')
#
one['G23'] = 123
one['a2'] = 2343
one['C3'] = 'hahaha'

a = [11,2,3,4,5,6,7,8,'猴子','妲己']
# 多行添加
two.append(a)
# 多行 多列添加
data = [
    ['入职时间','公司人力成本总额','在岗人数','人均成本'],
    [2015,10000,1000,9.6],
    [2016,12000,1100,19.6],
    [2017,15000,1500,29.6],
    [2018,9000,800,39.6],
    [2019,11000,900,9.6],
    [2020,30000,2000,16.6],
    [2021,20000,1700,10.1],
]
for tony in data:
    three.append(tony)

image.png

image.png

image.png

第三步:数据可视化分析

from openpyxl.chart import PieChart,Reference,BarChart


# 数据分析 - 饼状图
pie = PieChart()
pie.title='Tony老师来到此一游'
# 设置数据对比 展示 图标
label = Reference(three,min_col=1,min_row=2,max_row=8)
data = Reference(three,min_col=2,min_row=2,max_row=8)

pie.add_data(data)
pie.set_categories(label)
# 添加
three.add_chart(pie,'b10')

image.png

# 数据分析 - 柱状图
bar = BarChart()
bar.title='Tony老师来到此一游'
bar.x_axis.title= '年份'
bar.type = 'bar'
bar.style = 15
# 设置数据对比 展示 图标
labels = Reference(three,min_col=1,min_row=2,max_row=8)
datas = Reference(three,min_col=2,min_row=2,max_row=8)

bar.add_data(datas)
bar.set_categories(labels)
# 添加
three.add_chart(bar,'j2')

效果展示

image.png

在这个浮躁的时代;竟然还有人能坚持篇篇原创;

如果本文对你学习有所帮助-可以点赞👍+ 关注!将持续更新更多新的文章。

支持原创。感谢!

相关文章
|
1月前
|
数据处理 索引 Python
用Python实现数据录入、追加、数据校验并生成表格
本示例展示了如何使用Python和Pandas库实现学生期末考试成绩的数据录入、追加和校验,并生成Excel表格。首先通过`pip install pandas openpyxl`安装所需库,然后定义列名、检查并读取现有数据、用户输入数据、数据校验及保存至Excel文件。程序支持成绩范围验证,确保数据准确性。
86 14
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
141 10
|
20天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
3月前
|
机器学习/深度学习 人工智能 运维
构建高效运维体系:从自动化到智能化的演进
本文探讨了如何通过自动化和智能化手段,提升IT运维效率与质量。首先介绍了自动化在简化操作、减少错误中的作用;然后阐述了智能化技术如AI在预测故障、优化资源中的应用;最后讨论了如何构建一个既自动化又智能的运维体系,以实现高效、稳定和安全的IT环境。
93 4
|
3月前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
77 4
|
2月前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
2月前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
117 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
2月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
69 4

热门文章

最新文章