两种算法比较
广度优先搜索一个图的时候是按照树的层次来搜索的,(层次遍历),队列来实现,我们假设一个节点衍生出来的相邻节点的平均个数是N个,那么当起点开始搜索的时候,队列有一个节点,当起点拿出来后,把它相邻的节点放进去,那么队列就有N个节点,当下一层的搜索中再加入元素到队列的时候,节点数达到了N2,你可以想想,一旦N是一个比较大的数的时候,这个树的层次又比较深,那这个队列就得需要很大的内存空间了。
缺点:在树的层次较深&&子节点个数较多的情况下,消耗内存现象十分严重。因此,BFS适用于节点的子节点个数不多,并且树的层次不会太深的情况。优点:可以得到最优解。
与上面相对应的,DFS可以克服这个缺点,因为每次搜索的时候只需要维护一个节点,(递归、栈实现)但回过头想想,广度优先能够找到最短路径,那深度优先能否找到呢?深度优先的方法是一条路走到黑,那显然无法知道这条路是不是最短的,所以你还得继续走别的路去判断是否是最短路。
缺点:难以寻找最优解,仅仅只能寻找有解。其优点就是内存消耗小,克服了刚刚说的广度优先搜索的缺点。
一般说来,能用DFS解决的问题都能用BFS解决。DFS通过递归实现,易于实现,DFS的常数时间开销会比较少,所以大多数情况下优先考虑DFS实现。然后就是,DFS容易栈溢出,而BFS可以自己控制队列的长度。最后,BFS加上评估函数可以变成A算法,DFS加上评估函数可以变成IDA算法。
广度优先搜索(BFS)
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。
b. 将起始结点放入队列中。
c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现
d. 按照同样的方法处理队列中的下一个结点。
基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。
深度优先搜索(DFS)
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。