模拟IDC spark读写MaxCompute实践

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 现有湖仓一体架构是以 MaxCompute 为中心读写 Hadoop 集群数据,有些线下 IDC 场景,客户不愿意对公网暴露集群内部信息,需要从 Hadoop 集群发起访问云上的数据。本文以 EMR (云上 Hadoop)方式模拟本地 Hadoop 集群访问 MaxCompute数据。

一、背景

1、背景信息

       现有湖仓一体架构是以 MaxCompute 为中心读写 Hadoop 集群数据,有些线下 IDC 场景,客户不愿意对公网暴露集群内部信息,需要从 Hadoop 集群发起访问云上的数据。本文以 EMR (云上 Hadoop)方式模拟本地 Hadoop 集群访问 MaxCompute数据。

2、基本架构

二、搭建开发环境

1、EMR环境准备

(1)购买

① 登录阿里云控制台 - 点击右上角控制台选项 https://www.aliyun.com/accounttraceid=bc277aa7c0c64023b459dd695ac328b1jncu

② 进入到导航页 - 点击云产品 - E-MapReduce(也可以搜索)

③ 进入至  E-MapReduce 首页,点击 EMR on ECS - 创建集群

-- 具体购买细节参考官方文档 https://help.aliyun.com/document_detail/176795.html#section-55q-jmm-3ts

④ 点击集群ID 可查看集群的基础信息、集群服务以及节点管理等模块

(2)登录

-- 详细登录集群方式可参考官方文档 https://help.aliyun.com/document_detail/169150.html

-- 本文以登录ECS实例操作

① 点击阿里云首页控制台 - 云服务器ECS

https://www.aliyun.com/product/ecs?spm=5176.19720258.J_3207526240.92.542b2c4aSz6c39

② 点击实例名称 - 远程连接 - Workbench远程连接

2、本地IDEA准备

(1)安装maven

-- 可参考文档 https://blog.csdn.net/l32273/article/details/123684435

(2)创建Scala项目

① 下载Scala插件

② 安装 Scala JDK

-- 建议下载 *.zip 文件

-- 配置 Scala 环境变量

-- 通过 Win + R 打开 cmd 测试是否出现 Scala版本

-- 可参考文档: https://blog.csdn.net/m0_59617823/article/details/124310663

③ 创建 Scala 项目

3、MaxCompute数据准备

(1)Project

-- MaxCompute 创建 project 可参考官方文档: https://help.aliyun.com/document_detail/27815.html

(2)AccessKey

-- 简称AK,包括AccessKey ID和AccessKey Secret,是访问阿里云API的密钥。在阿里云官网注册云账号后,可以在AccessKey管理页面生成该信息,用于标识用户,为访问MaxCompute、其他阿里云产品或连接第三方工具做签名验证。请妥善保管AccessKey Secret,必须保密,如果存在泄露风险,请及时禁用或更新AccessKey。

-- 查找 ak 可参考官方文档

https://ram.console.aliyun.com/manage/ak?spm=a2c4g.11186623.0.0.24704213IXakh3

(3)Endpoint

-- MaxCompute服务:连接地址为Endpoint,取值由地域及网络连接方式决定

-- 各地域 endpoint 可参考官方文档:https://help.aliyun.com/document_detail/34951.html

(4)table

-- MaxCompute 创建表可参考官方文档 https://help.aliyun.com/document_detail/73768.html

-- 本文需准备分区表和非分区表,供测试使用

三、代码测试

1、前提条件

(1)准备 MaxCompute 上的project、ak信息以及表数据

(2)准备  E-MapReduce集群

(3)终端连接  E-MapReduce节点(即 ECS 实例)

(4)本地 IDEA 需配置 Scala 环境变量、maven 环境变量 并下载 Scala 插件

2、代码示例

https://github.com/aliyun/aliyun-maxcompute-data-collectors/blob/master/spark-datasource-v3.1/src/test/scala/PartitionDataReaderTest.scala

3、打包上传

(1)本地写好代码后,maven 打包

(2)本地编译jar包

① 进入project目录

cd ${project.dir}/spark-datasource-v3.1

② 执行mvn命令构建spark-datasource

mvn clean package jar:test-jar

③ 查看 target 目录下是否有 dependencies.jar 和 tests.jar

(3)打好的 jar 包上传至服务器

① scp 命令上传

scp [本地jar包路径] root@[ecs实例公网IP]:[服务器存放jar包路径]

② 服务器查看

③ 各节点之间上传 jar 包

scp -r [本服务器存放jar包路径] root@ecs实例私网IP:[接收的服务器存放jar包地址]

4、测试

(1)运行模式

① Local 模式:指定 master 参数为 local

./bin/spark-submit \
    --master local \
    --jars ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar,${project.dir}/spark-datasource-v2.3/libs/cupid-table-api-1.1.5-SNAPSHOT.jar,${project.dir}/spark-datasource-v2.3/libs/table-api-tunnel-impl-1.1.5-SNAPSHOT.jar \
    --class DataReaderTest \
    ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-tests.jar \
    ${maxcompute-project-name} \
    ${aliyun-access-key-id} \
    ${aliyun-access-key-secret} \
    ${maxcompute-table-name}

② yarn 模式:指定master 参数为 yarn、代码中 endpoint 选择以 -inc 结尾

代码:val ODPS_ENDPOINT = "http://service.cn-beijing.maxcompute.aliyun-inc.com/api"
./bin/spark-submit \
    --master yarn \
    --jars ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar,${project.dir}/spark-datasource-v2.3/libs/cupid-table-api-1.1.5-SNAPSHOT.jar,${project.dir}/spark-datasource-v2.3/libs/table-api-tunnel-impl-1.1.5-SNAPSHOT.jar \
    --class DataReaderTest \
    ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-tests.jar \
    ${maxcompute-project-name} \
    ${aliyun-access-key-id} \
    ${aliyun-access-key-secret} \
    ${maxcompute-table-name}

(2)读非分区表表测试

① 命令

-- 首先进入spark执行环境
cd /usr/lib/spark-current
-- 提交任务
./bin/spark-submit \
    --master local \
    --jars ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar,${project.dir}/spark-datasource-v2.3/libs/cupid-table-api-1.1.5-SNAPSHOT.jar,${project.dir}/spark-datasource-v2.3/libs/table-api-tunnel-impl-1.1.5-SNAPSHOT.jar \
    --class DataReaderTest \
    ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-tests.jar \
    ${maxcompute-project-name} \
    ${aliyun-access-key-id} \
    ${aliyun-access-key-secret} \
    ${maxcompute-table-name}

② 执行界面


③ 执行结果


(2)读分区表测试

① 命令

-- 首先进入spark执行环境
cd /usr/lib/spark-current
-- 提交任务
./bin/spark-submit \
    --master local \
    --jars ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar,${project.dir}/spark-datasource-v2.3/libs/cupid-table-api-1.1.5-SNAPSHOT.jar,${project.dir}/spark-datasource-v2.3/libs/table-api-tunnel-impl-1.1.5-SNAPSHOT.jar \
    --class DataWriterTest \
    ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-tests.jar \
    ${maxcompute-project-name} \
    ${aliyun-access-key-id} \
    ${aliyun-access-key-secret} \
    ${maxcompute-table-name} \
    ${partition-descripion}


② 执行界面


③ 执行结果


(3)写非分区表表测试

① 命令

./bin/spark-submit \
    --master local \
    --jars ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar,${project.dir}/spark-datasource-v2.3/libs/cupid-table-api-1.1.5-SNAPSHOT.jar,${project.dir}/spark-datasource-v2.3/libs/table-api-tunnel-impl-1.1.5-SNAPSHOT.jar \
    --class DataWriterTest \
    ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-tests.jar \
    ${maxcompute-project-name} \
    ${aliyun-access-key-id} \
    ${aliyun-access-key-secret} \
    ${maxcompute-table-name}


② 执行界面


③ 执行结果


(4)写分区表测试

① 命令

./bin/spark-submit \
    --master local \
    --jars ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar,${project.dir}/spark-datasource-v2.3/libs/cupid-table-api-1.1.5-SNAPSHOT.jar,${project.dir}/spark-datasource-v2.3/libs/table-api-tunnel-impl-1.1.5-SNAPSHOT.jar \
    --class DataWriterTest \
    ${project.dir}/spark-datasource-v3.1/target/spark-datasource-1.0-SNAPSHOT-tests.jar \
    ${maxcompute-project-name} \
    ${aliyun-access-key-id} \
    ${aliyun-access-key-secret} \
    ${maxcompute-table-name} \
    ${partition-descripion}


② 执行过程


③ 执行结果


5、性能测试

-- 由于实验环境是 EMR 和 MC ,属于云上互联,如果 IDC 网络与云上相连取决于 tunnel 资源或者专线带宽

(1)大表读测试

-- size:4829258484 byte

-- partitions : 593个

-- 读取分区 20170422

-- 耗时: 0.850871 s


(2)大表写测试

① 分区写入 万条 数据

-- 耗时:2.5s

-- 结果


② 分区写入 十万条 数据

-- 耗时:8.44 s

-- 结果:


③ 分区写入 百万条 数据

-- 耗时:73.28 s

-- 结果


lQLPJxZt8w2hn7PNBAHNCkGwYhMu6WTj60YCtTUa9oCuAA_2625_1025.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
24天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
67 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
25天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
50 6
|
23天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
23天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
79 2
|
24天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
61 1
|
24天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
25天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
52 1
|
1月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
39 1
|
1月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
|
1月前
|
存储 分布式计算 大数据
大数据-145 Apache Kudu 架构解读 Master Table 分区 读写
大数据-145 Apache Kudu 架构解读 Master Table 分区 读写
45 0

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 下一篇
    无影云桌面