软考中级软件设计师自我总结知识分享--算法与分析

简介: 该系列文章全篇文字在10w+,全文都是自己备考中的干货,软考涉及很多计算机基础,数据结构,算法分析,编程思想,开发流程等等,不仅适合参加软考的人学习,也适合扩宽自己知识视野的人去学习,每一篇都将会把重点加粗处理,特别是易错点,考试常考平时也容易记错,请一定仔细看!

章节梳理


算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。

特征

一个算法应该具有以下五个重要的特征:

1、有穷性(Finiteness)

算法的有穷性是指算法必须能在执行有限个步骤之后终止;

2、确定性(Definiteness)

算法的每一步骤必须有确切的定义;

3、输入项(Input) 一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;

4、输出项(Output)

一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;

5、可行性(Effectiveness)

算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成      (也称之为有效性)。


算法性能比较

1.时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n的函数f(n),算法的      时间复杂度也因此记做:  T(n)=Ο(f(n))因此,问题的规模n越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度。

2.空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

常见的四个算法思想:动态规划、贪心、回溯、分治。

其中动态规划又可分为线性动规,区域动规,树形动规和背包动规四类。

网络异常,图片无法展示
|


  线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等

  区域动规:石子合并,加分二叉树,统计单词个数,炮兵布阵等

  树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等

  背包问题:0-1背包问题,完全背包问题,分组背包问题,二维背包问题,装箱问题,挤牛奶等

贪心法:0-1背包问题,马踏棋盘,均分纸牌

网络异常,图片无法展示
|


回溯法:类似枚举的全局搜索。它会找到一个问题的所有可行解,选其中的最优解。

网络异常,图片无法展示
|


举例:图的深度优先遍历,n皇后

分治:将一个大问题分解成小问题再求解。同时小问题性质与原问题性质相同。

网络异常,图片无法展示
|


网络异常,图片无法展示
|


时间复杂度中通常有一个㏒n

举例:找出伪币,求最值,棋盘覆盖等

这部分内容偏难,在软考中算大题,能拿个7、8分就可以了。所有这部分笔记内容并不多。但是要了解基础的一些经典算法,比如皇后问题等等

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
87 4
|
20天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
49 1
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
68 4
|
3月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
59 1
|
2月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
187 19
|
3月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
55 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
2月前
|
算法 安全 Go
Python与Go语言中的哈希算法实现及对比分析
Python与Go语言中的哈希算法实现及对比分析
47 0
下一篇
DataWorks