深度学习领域的突破

简介: 深度学习领域的突破

  十多年前,深度学习领域的突破,让沉寂多年的AI迎来过一段高光时刻。彼时,招揽技术大拿、比拼算法精度、刷榜国际竞赛,是早期AI行业的招牌“三板斧”。斧子落地,新一轮风口若隐若现,资本闻风而动,不惜为AI企业挥金如土,唯恐错过下一座“宝藏”。

  这种势头一直延续到2016年,在AlphaGo赢下围棋“人机大战”之后达到了顶峰。紧接着,新一代人工智能发展规划强势出台,AI创业公司如雨后春笋般涌现,科技和互联网巨头们也纷纷下场布局AI。据不完全统计,2017年国内新增的AI公司就有近8000家。在2018年,该项数据更是迅速攀升至惊人的18000多家。越来越多人相信,一个新的AI时代正呼之欲出。

  然而,剧本没有如期上演。当AI的战局逐渐从“学术型竞赛”转入“商业化巷战”,各种问题开始出现。按照AI公司早期理想的商业模型,他们只需研发出标准化的算法SDK模块,然后将其集成在行业方案里,最后通过算法SDK的调用量实现商业化闭环。薄利多销、一本万利,看起来是一笔“躺赢”的好买卖。早期的状况也的确如AI公司所愿,包括移动App开发商、互联网金融等在内的企业,成为了最早的一批愿意为此买单的客户。这些客户主动登门找上了AI公司,提出购买算法SDK的调用服务。这种商业模式给AI公司带来了实际的收入,初尝甜头的AI公司开始有了一种错觉,实现规模化盈利似乎指日可待。

目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
55 3
|
机器学习/深度学习 人工智能 算法
探索深度学习中的卷积神经网络
随着人工智能的快速发展,深度学习已成为解决复杂问题的强大工具之一。其中,卷积神经网络(CNN)作为一种广泛应用于计算机视觉和图像识别领域的模型,受到了广泛关注和研究。
100 2
|
2月前
|
机器学习/深度学习 传感器 监控
基于深度学习的感知和认知系统
基于深度学习的感知-认知系统结合了感知和认知两大核心模块,旨在为机器提供从数据采集、分析到决策制定的一整套能力。这种系统模仿人类的感知(如视觉、听觉)和认知(如推理、决策)过程,能够高效地感知复杂环境,并进行智能决策。
54 2
|
3月前
|
机器学习/深度学习 算法 TensorFlow
【深度学习】深度学习语音识别算法的详细解析
深度学习语音识别算法是一种基于人工神经网络的语音识别技术,其核心在于利用深度神经网络(Deep Neural Network,DNN)自动从语音信号中学习有意义的特征,并生成高效的语音识别模型。以下是对深度学习语音识别算法的详细解析
128 5
|
3月前
|
机器学习/深度学习 人工智能 算法框架/工具
深入理解深度学习中的卷积神经网络
【8月更文挑战第4天】本文旨在探索卷积神经网络(CNN)的奥秘,从其基本构成到在图像识别领域的应用。我们将通过Python代码示例,展示如何构建一个简单的CNN模型,并讨论其在处理实际问题时的效能。文章末尾将提出一个思考性问题,激发读者对深度学习未来方向的想象。
|
4月前
|
机器学习/深度学习 自然语言处理 语音技术
深度学习在 NLP 中的应用
深度学习在 NLP 中的应用
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
了解深度学习
【6月更文挑战第26天】了解深度学习。
40 3
|
5月前
|
机器学习/深度学习 传感器 安全
|
5月前
|
机器学习/深度学习 自然语言处理 算法
|
6月前
|
机器学习/深度学习 人工智能 算法
深度学习领域
【5月更文挑战第3天】深度学习领域
64 7
下一篇
无影云桌面