Python 标准库:csv

简介: Python 标准库:csv

我们经常会用 CSV 文件保存联系人信息,或者一些表格数据, 在 Python 中也会有支持 CSV 的标准库。


如果需要从 CSV 文件中读取数据并返回一组字典应该怎么做呢?


比如对下面这个文件 data.csv

"Ordinal","Name","DoB"
1,"Annabel",08/18/2007
2,"Brian",08/19/2007
3,"Charlie",08/20/2007
4,"Derek",08/21/2007
5,"Emily",08/22/2007
6,"Fortune",08/23/2007
7,"Gerald",08/24/2007
8,"Harriet",08/25/2007
9,"India",08/26/2007


可以用下面这个函数来读取数据, 把第一行的列名作为字典的 key ,后面每行的数据做为 value, 和 key 对应地逐条显示出来。

import csv
def read_csv_loop(file_name='data.csv'):
    raw_result = []
    with open(file_name) as f:
        reader = csv.reader(f)
        for row in reader:
            raw_result.append(row)
    keys = raw_result[0]
    result = []
    for row in raw_result[1:]:
        result.append({keys[i] : val for i, val in enumerate(row)})
    return result


其中 with 语句是为了防止打开的文件忘记被关掉,不过这个方法有点麻烦,它用了一个 enumerate 函数来遍历读出来的结果。csv 还有更好用的方法 DictReader 可以利用,

import csv
def read_csv(file_name='data.csv'):
    with open(file_name) as f:
        reader = csv.DictReader(f)
        return [row for row in reader]
if __name__ == '__main__':
    print read_csv('data.csv')


输出:

[{'Ordinal': '1', 'DoB': '08/18/2007', 'Name': 'Annabel'}, {'Ordinal': '2', 'DoB': '08/19/2007', 'Name': 'Brian'}, {'Ordinal': '3', 'DoB': '08/20/2007', 'Name': 'Charlie'}, {'Ordinal': '4', 'DoB': '08/21/2007', 'Name': 'Derek'}, {'Ordinal': '5', 'DoB': '08/22/2007', 'Name': 'Emily'}, {'Ordinal': '6', 'DoB': '08/23/2007', 'Name': 'Fortune'}, {'Ordinal': '7', 'DoB': '08/24/2007', 'Name': 'Gerald'}, {'Ordinal': '8', 'DoB': '08/25/2007', 'Name': 'Harriet'}, {'Ordinal': '9', 'DoB': '08/26/2007', 'Name': 'India'}]



目录
相关文章
|
11天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
14天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
41 0
|
7天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
7天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
16 2
|
12天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
33 7
|
28天前
|
网络协议 数据库连接 Python
python知识点100篇系列(17)-替换requests的python库httpx
【10月更文挑战第4天】Requests 是基于 Python 开发的 HTTP 库,使用简单,功能强大。然而,随着 Python 3.6 的发布,出现了 Requests 的替代品 —— httpx。httpx 继承了 Requests 的所有特性,并增加了对异步请求的支持,支持 HTTP/1.1 和 HTTP/2,能够发送同步和异步请求,适用于 WSGI 和 ASGI 应用。安装使用 httpx 需要 Python 3.6 及以上版本,异步请求则需要 Python 3.8 及以上。httpx 提供了 Client 和 AsyncClient,分别用于优化同步和异步请求的性能。
python知识点100篇系列(17)-替换requests的python库httpx
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
45 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
13天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
16天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
36 5
|
15天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
29 2