《Python数据可视化编程实战》—— 1.3 安装virtualenv和virtualenvwrapper

简介:

本节书摘来异步社区《Python数据可视化编程实战》一书中的第1章,第1.3节,作者:【爱尔兰】Igor Milovanović,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.3 安装virtualenv和virtualenvwrapper

Python数据可视化编程实战
如果同时工作在多个项目上,或是需要在不同项目间频繁切换,将所有的软件都安装在操作系统层级上也许不是一个好主意。当需要在不同系统(产品环境)上运行软件时,这种方式会带来问题。如果到此时才发现缺少特定的软件包,或是产品环境已经安装的软件包存在版本冲突,这将是非常痛苦的。为避免这种情况发生,可以选择使用virtualenv。

virtualenv是由Ian Bicking创建的开放源代码项目。通过这个项目, 开发人员可以把不同项目的工作环境隔离开,从而能够更容易地维护多种不同的软件包版本。

举例来说,Django网站系统是基于Django 1.1和 Python 2.3版本开发的,但与此同时,一个新项目要求必须基于Python2.6来开发。在笔者工作过的项目中,根据项目的需要同时使用多个版本的Python(以及相关软件包)的情况非常普遍。

virtualenv能够让我们很容易地在不同的运行环境之间切换。同时,如果需要切换到另外的机器或者需要在产品服务器(或客户的工作站主机)上部署软件, 用virtualenv能够很容易地重新构建相同的软件包环境。

1.3.1 准备工作

若安装virtualenv,需要用到Python和pip。Pip是安装并管理Python软件包的工具,可以用它来代替easy install工具。本书中大部分的软件包都是用pip工具进行管理的。只需在终端中以root身份执行如下命令,就可以很容易地完成pip的安装。

# easy_install pip```
virtualenv本身已经相当不错了,然而如果配合virtualenvwrapper,一切变得更加简单,并且组织多个虚拟环境的工作也会更加容易。

####1.3.2 操作步骤
安装virtualenv和virtualenvwrapper工具的步骤如下。

1.安装virtualenv和virtualenvwrapper。

$ sudo pip virtualenv
$ sudo pip virtualenvwrapper

创建保存虚拟环境的目录,并使用export导出为环境变量。

$ export VIRTENV=~/.virtualenvs
$ mkdir -p $VIRTENV

使用source命令调用(执行)shell脚本来激活包装器

$ source /usr/local/bin/virtualenvwrapper.sh

创建一个虚拟环境

$ mkvirtualenv virt1
2.在virt1环境中安装matplotlib。

(virt1)user1:~$ pip install matplotlib
3.很有可能需要把以下代码添加到~/.bashrc中。

source /usr/loca/bin/virtualenvwrapper.sh

下面是一些有用和频繁使用的命令。

mkvirtualenv ENV: 创建名为ENV的虚拟环境并激活。
workon ENV: 激活先前创建的ENV虚拟环境。
相关文章
|
27天前
|
IDE 开发工具 索引
在Python中安装第三方库
在Python中安装第三方库
382 30
|
16天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
28天前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
37 9
|
24天前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
1月前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
96 19
|
24天前
|
存储 JSON 网络安全
使用 EFS 在 AWS Lambda 上安装 Python 依赖项
使用 aws lambda 时,开发人员面临的常见挑战之一是管理大型 python 依赖项。
29 1
|
27天前
|
Ubuntu Linux iOS开发
安装Python
安装 Python 是相对简单的过程,但需要根据不同的操作系统选择合适的方法。同时,合理使用虚拟环境可以更好地管理项目的依赖和环境,提高开发效率。希望这些步骤和注意事项能帮助你顺利安装 Python。
|
1月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
2月前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
50 7
|
1月前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
39 5
下一篇
DataWorks