《Python数据可视化编程实战》—— 1.3 安装virtualenv和virtualenvwrapper

简介:

本节书摘来异步社区《Python数据可视化编程实战》一书中的第1章,第1.3节,作者:【爱尔兰】Igor Milovanović,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.3 安装virtualenv和virtualenvwrapper

Python数据可视化编程实战
如果同时工作在多个项目上,或是需要在不同项目间频繁切换,将所有的软件都安装在操作系统层级上也许不是一个好主意。当需要在不同系统(产品环境)上运行软件时,这种方式会带来问题。如果到此时才发现缺少特定的软件包,或是产品环境已经安装的软件包存在版本冲突,这将是非常痛苦的。为避免这种情况发生,可以选择使用virtualenv。

virtualenv是由Ian Bicking创建的开放源代码项目。通过这个项目, 开发人员可以把不同项目的工作环境隔离开,从而能够更容易地维护多种不同的软件包版本。

举例来说,Django网站系统是基于Django 1.1和 Python 2.3版本开发的,但与此同时,一个新项目要求必须基于Python2.6来开发。在笔者工作过的项目中,根据项目的需要同时使用多个版本的Python(以及相关软件包)的情况非常普遍。

virtualenv能够让我们很容易地在不同的运行环境之间切换。同时,如果需要切换到另外的机器或者需要在产品服务器(或客户的工作站主机)上部署软件, 用virtualenv能够很容易地重新构建相同的软件包环境。

1.3.1 准备工作

若安装virtualenv,需要用到Python和pip。Pip是安装并管理Python软件包的工具,可以用它来代替easy install工具。本书中大部分的软件包都是用pip工具进行管理的。只需在终端中以root身份执行如下命令,就可以很容易地完成pip的安装。

# easy_install pip```
virtualenv本身已经相当不错了,然而如果配合virtualenvwrapper,一切变得更加简单,并且组织多个虚拟环境的工作也会更加容易。

####1.3.2 操作步骤
安装virtualenv和virtualenvwrapper工具的步骤如下。

1.安装virtualenv和virtualenvwrapper。

$ sudo pip virtualenv
$ sudo pip virtualenvwrapper

创建保存虚拟环境的目录,并使用export导出为环境变量。

$ export VIRTENV=~/.virtualenvs
$ mkdir -p $VIRTENV

使用source命令调用(执行)shell脚本来激活包装器

$ source /usr/local/bin/virtualenvwrapper.sh

创建一个虚拟环境

$ mkvirtualenv virt1
2.在virt1环境中安装matplotlib。

(virt1)user1:~$ pip install matplotlib
3.很有可能需要把以下代码添加到~/.bashrc中。

source /usr/loca/bin/virtualenvwrapper.sh

下面是一些有用和频繁使用的命令。

mkvirtualenv ENV: 创建名为ENV的虚拟环境并激活。
workon ENV: 激活先前创建的ENV虚拟环境。
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
239 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
XML 数据格式 Python
Python实用记录(五):labelImg安装和使用-----看这篇就够了!
这篇文章介绍了在Windows 10系统中使用Anaconda3安装labelImg工具的方法,包括通过pip安装相关包和从GitHub下载配置,以及一些使用技巧,如修改预定义类别和自动保存功能。
174 3
|
8天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
45 19
|
4天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
1月前
|
网络协议 Java Linux
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
本文介绍了PyAV库,它是FFmpeg的Python绑定,提供了底层库的全部功能和控制。文章详细讲解了PyAV的安装过程,包括在Windows、Linux和ARM平台上的安装步骤,以及安装中可能遇到的错误和解决方法。此外,还解释了时间戳的概念,包括RTP、NTP、PTS和DTS,并提供了Python代码示例,展示如何获取RTSP流中的各种时间戳。最后,文章还提供了一些附录,包括Python通过NTP同步获取时间的方法和使用PyAV访问网络视频流的技巧。
165 4
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
|
20天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
44 7
|
19天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
20 5
|
20天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
28 4
|
29天前
|
Python
Python 三方库下载安装
Python 三方库下载安装
23 1
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
339 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)