《数据科学与大数据分析——数据的发现 分析 可视化与表示》一2.9 总结

简介:

本节书摘来自异步社区《数据科学与大数据分析——数据的发现 分析 可视化与表示》一书中的第2章,第2.9节,作者【美】EMC Education Services(EMC教育服务团队),更多章节内容可以访问云栖社区“异步社区”公众号查看

2.9 总结

本章描述了数据分析生命周期,这是一种用于管理和执行分析项目的方法。这种方法可以被描述为6个阶段。

1.发现

2.数据准备

3.模型规划

4.模型建立

5.沟通结果

6.实施

通过这些步骤,数据科学团队可以识别问题并对深度分析所需要的数据集进行严谨的探索。本章虽然花了很多篇幅来讲解分析方法,但实际项目的主要时间会花在第1和第2阶段,即发现和数据准备。此外,本章还讨论了数据科学团队中需要的7个角色。组织机构必须认识到数据科学强调团队协作,而要想成功地运行大数据项目和其他涉及数据分析的复杂项目,则需要各种技能的平衡。

相关文章
|
20天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
38 2
|
机器学习/深度学习 人工智能 算法
「数据分析」精选数据挖掘和机器学习软件列表
「数据分析」精选数据挖掘和机器学习软件列表
|
数据挖掘 Go 数据库
数据分析与数据挖掘研究之一 (下)
数据分析与数据挖掘研究之一
数据分析与数据挖掘研究之一 (下)
|
数据采集 分布式计算 数据可视化
数据分析学习
个人学习
208 0
数据分析学习
|
数据挖掘 数据库 Perl
数据分析与数据挖掘研究之一 (上)
之前做过一些数据分析与数据挖掘相关的工作,最近抽空将之前做的内容简单整理一下,方便查看,主要使用R语言和PERL脚本语言,使用TCGA和ICGC数据库中的临床数据,做类似的分析可以参考一下,如果想查看详细内容与数据可以通过本人的Gitee及Github仓库下载,链接于篇尾附上。
数据分析与数据挖掘研究之一 (上)
|
机器学习/深度学习 SQL 自然语言处理
数据挖掘与数据分析
数据挖掘与数据分析
328 0
|
JSON JavaScript 前端开发
数据科学的原理与技巧 五、探索性数据分析
五、探索性数据分析 原文:DS-100/textbook/notebooks/ch05 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 探索性数据分析是一种态度,一种灵活的状态,一种寻找那些我们认为不存在和存在的东西的心愿。
1082 0
|
人工智能 物联网 数据挖掘
非数据科学家如何进行数据分析?
文章讲的是非数据科学家如何进行数据分析,Gartner报告称,到2018年,大多数业务人员和分析师都将通过自助式BI工具来准备和分析大数据。虽然目前国内的发展现状无法在2018年达到自助式分析的局面,但这一趋势无法否认。
1236 0