GOplot | 更美观的富集分析可视化

简介: GOplot | 更美观的富集分析可视化

GOplot | 更美观的富集分析可视化

数据准备


# 下载
install.packages('GOplot')
library(GOplot)
# 载入示例数据
data(EC)
# 富集分析结果 
head(EC$david)
# 差异分析结果
head(EC$genelist)
# 生成画图数据
circ <- circle_dat(EC$david, EC$genelist)
> head(circ)
  category         ID              term count  genes      logFC adj_pval     zscore
1       BP GO:0007507 heart development    54   DLC1 -0.9707875 2.17e-06 -0.8164966
2       BP GO:0007507 heart development    54   NRP2 -1.5153173 2.17e-06 -0.8164966
3       BP GO:0007507 heart development    54   NRP1 -1.1412315 2.17e-06 -0.8164966
4       BP GO:0007507 heart development    54   EDN1  1.3813006 2.17e-06 -0.8164966
5       BP GO:0007507 heart development    54 PDLIM3 -0.8876939 2.17e-06 -0.8164966
6       BP GO:0007507 heart development    54   GJA1 -0.8179480 2.17e-06 -0.8164966

GOplot使用了zscore概念,但其并不是指Z-score标准化,而是指每个GO term下上调(logFC>0)基因数和下调基因数的差与注释到GO term基因数平方根的商。用于表示每个GO Term的上下调情况,公式:


image.png



可视化


条图

GOBar(subset(circ, category == 'BP'))

image.png

zscore用于表示每个Term的上下调情况
# 以terms的分类进行分面
GOBar(circ, display = 'multiple')

image.png


# 以terms的分类进行分面 切改变色阶颜色
GOBar(circ, display = 'multiple', title = 'Z-score coloured barplot', zsc.col = c('yellow', 'black', 'cyan'))

image.png

气泡图

z-score作为横坐标,校正p值的负对数作为纵坐标(y轴越高越显著)。所显示圆圈的面积与富集到term的基因数量成比例,颜色对应于类别。

# 生成y大于3的term的标签
GOBubble(circ, labels = 3)

image.png

# 添加标题、分面、修改颜色
GOBubble(circ, title = 'Bubble plot', colour = c('orange', 'darkred', 'gold'), display = 'multiple', labels = 3)

image.png


# 根据分类添加背景色
GOBubble(circ, title = 'Bubble plot with background colour', display = 'multiple', bg.col = T, labels = 3)

image.png


reduce_overlap减少冗余terms数目。该功能删除所有基因重叠大于或等于设定阈值的terms。保留每个组的一个terms作为代表,而不考虑GO层次结构。


# 删除所有基因重叠大于或等于 0.75的 terms
reduced_circ <- reduce_overlap(circ, overlap = 0.75)
GOBubble(reduced_circ, labels = 2.8)

image.png



圈图


GOCircle(circ)

image.png


# 可视化感兴趣的 terms
IDs <- c('GO:0007507', 'GO:0001568', 'GO:0001944', 'GO:0048729', 'GO:0048514', 'GO:0005886', 'GO:0008092', 'GO:0008047')
GOCircle(circ, nsub = IDs)

image.png


# 可视化前10个terms
GOCircle(circ, nsub = 10)

image.png


弦图

显示了所选基因和术语列表之间的关系,以及这些基因的logFC。


数据准备


head(EC$genes)
##      ID      logFC
## 1  PTK2 -0.6527904
## 2 GNA13  0.3711599
## 3  LEPR  2.6539788
## 4  APOE  0.8698346
## 5 CXCR4 -2.5647537
## 6  RECK  3.6926860
EC$process
## [1] "heart development"        "phosphorylation"         
## [3] "vasculature development"  "blood vessel development"
## [5] "tissue morphogenesis"     "cell adhesion"           
## [7] "plasma membrane"
chord <- chord_dat(circ, EC$genes, EC$process)
head(chord)
##       heart development phosphorylation vasculature development
## PTK2                  0               1                       1
## GNA13                 0               0                       1
## LEPR                  0               0                       1
## APOE                  0               0                       1
## CXCR4                 0               0                       1
## RECK                  0               0                       1
##       blood vessel development tissue morphogenesis cell adhesion
## PTK2                         1                    0             0
## GNA13                        1                    0             0
## LEPR                         1                    0             0
## APOE                         1                    0             0
## CXCR4                        1                    0             0
## RECK                         1                    0             0
##       plasma membrane      logFC
## PTK2                1 -0.6527904
## GNA13               1  0.3711599
## LEPR                1  2.6539788
## APOE                1  0.8698346
## CXCR4               1 -2.5647537
## RECK                1  3.6926860


绘制


chord <- chord_dat(data = circ, genes = EC$genes, process = EC$process)
GOChord(chord, space = 0.02, gene.order = 'logFC', gene.space = 0.25, gene.size = 5)

image.png


#只显示富集到至少3个terms的基因
GOChord(chord, limit = c(3, 0), gene.order = 'logFC')

image.png


热图

GOHeat(chord[,-8], nlfc = 0) #nlfc = 0,则以count为色阶

image.png


GOHeat(chord, nlfc = 1, fill.col = c('red', 'yellow', 'green')) #nlfc = 0,则以logFC 为色阶

image.png


GOCluster

GOCluster(circ, EC$process, clust.by = 'logFC', term.width = 2)

image.png


GOCluster(circ, EC$process, clust.by = 'term', lfc.col = c('darkgoldenrod1', 'black', 'cyan1'))

image.png


Venn diagram

l1 <- subset(circ, term == 'heart development', c(genes,logFC))
l2 <- subset(circ, term == 'plasma membrane', c(genes,logFC))
l3 <- subset(circ, term == 'tissue morphogenesis', c(genes,logFC))
GOVenn(l1,l2,l3, label = c('heart development', 'plasma membrane', 'tissue morphogenesis'))



参考

GOplot (wencke.github.io)

image.png


image.png

相关文章
|
自然语言处理 数据可视化 算法
第5章 数据可视化——5.4 四维图形可视化
第5章 数据可视化——5.4 四维图形可视化
|
数据可视化 数据挖掘
数据可视化 :你想知道的经典图表全在这
数据可视化是一个热门的概念,是分析师手中的优秀工具。好的可视化是会讲故事的,它向我们揭示了数据背后的规律。
4691 0
|
30天前
|
数据可视化 定位技术 vr&ar
酷企秀可视化设计器
酷企秀可视化设计器
24 0
|
6月前
|
数据可视化 定位技术
Tableau 数据可视化:探索性图形分析新生儿死亡率数据
Tableau 数据可视化:探索性图形分析新生儿死亡率数据
|
6月前
|
分布式计算 数据可视化 数据库
R语言进行相关矩阵分析及其可视化
R语言进行相关矩阵分析及其可视化
|
6月前
|
数据采集 数据可视化
R语言用相关网络图可视化分析汽车配置和饮酒习惯
R语言用相关网络图可视化分析汽车配置和饮酒习惯
|
6月前
|
数据可视化
R语言用igraph绘制网络图可视化
R语言用igraph绘制网络图可视化
|
数据可视化 Go
clusterProfiler|GSEA富集分析及可视化
clusterProfiler|GSEA富集分析及可视化
541 0
|
数据可视化
视觉可视化分析与设计
Visualization Analysis & Design
121 0
|
数据可视化 数据挖掘 Python
Python数据分析系列05-绘制地图可视化分析数据
生活中,无论是谁,都可能遇到人生低谷的时光,或是前路迷茫,或是被命运的洪流击败。 过分患得患失,往往得不偿失。比失败更可怕的是,被失败打败。 有的人遇到挫折后,担心再次失败,而瞻前顾后。 结果,越害怕失败,就越不敢前行,心绪越紧张,就越无法改变现状。 从而,让自己陷入“持续低迷、心力交瘁”的死循环中,无法自拔。
Python数据分析系列05-绘制地图可视化分析数据