R语言进行相关矩阵分析及其可视化

简介: R语言进行相关矩阵分析及其可视化

数据准备

# Select columns of interest
mydata <- mtcars %>% 
  select(mpg, disp, hp, drat, wt, qsec)
# Add some missing values
mydata$hp[3] <- NA
# Inspect the data
head(mydata, 3)##                mpg disp  hp drat   wt qsec
## Mazda RX4     21.0  160 110 3.90 2.62 16.5
## Mazda RX4 Wag 21.0  160 110 3.90 2.88 17.0
## Datsun 710    22.8  108  NA 3.85 2.32 18.6

计算相关矩阵

res.cor <- correlate(mydata)
res.cor## # A tibble: 6 x 7
##   rowname     mpg    disp      hp     drat      wt     qsec
##   <chr>     <dbl>   <dbl>   <dbl>    <dbl>   <dbl>    <dbl>
## 1 mpg      NA      -0.848  -0.775   0.681   -0.868   0.419
## 2 disp     -0.848  NA       0.786  -0.710    0.888  -0.434
## 3 hp       -0.775   0.786  NA      -0.443    0.651  -0.706
## 4 drat      0.681  -0.710  -0.443  NA       -0.712   0.0912
## 5 wt       -0.868   0.888   0.651  -0.712   NA      -0.175
## 6 qsec      0.419  -0.434  -0.706   0.0912  -0.175  NA

该函数的其他参数correlate()包括:

  • method:字符串,指示要计算哪个相关系数(或协方差)。“pearson”(默认),“kendall”或“spearman”之一:可以缩写。
  • diagonal:将对角线设置为的值(通常为数字或NA)。


探索相关矩阵


过滤器相关性高于0.8:

## # A tibble: 6 x 3
##   rowname colname    cor
##   <chr>   <chr>    <dbl>
## 1 disp    mpg     -0.848
## 2 wt      mpg     -0.868
## 3 mpg     disp    -0.848
## 4 wt      disp     0.888
## 5 mpg     wt      -0.868
## 6 disp    wt       0.888

特定的列/行

该功能focus()使得可以focus()在列和行上进行操作。此函数的作用与dplyr类似slect(),但也会从行中排除选定的列。

  • 选择与兴趣列相关的结果。所选列将从行中排除:
## # A tibble: 3 x 4
##   rowname    mpg   disp     hp
##   <chr>    <dbl>  <dbl>  <dbl>
## 1 drat     0.681 -0.710 -0.443
## 2 wt      -0.868  0.888  0.651
## 3 qsec     0.419 -0.434 -0.706
  • 选定的列:







## # A tibble: 3 x 4
##   rowname     mpg    disp      hp
##   <chr>     <dbl>   <dbl>   <dbl>
## 1 mpg      NA      -0.848  -0.775
## 2 disp     -0.848  NA       0.786
## 3 hp       -0.775   0.786  NA


  • 删除不需要的列:







## # A tibble: 3 x 4
##   rowname   drat     wt   qsec
##   <chr>    <dbl>  <dbl>  <dbl>
## 1 mpg      0.681 -0.868  0.419
## 2 disp    -0.710  0.888 -0.434
## 3 hp      -0.443  0.651 -0.706


  • 正则表达式选择列








## # A tibble: 4 x 3
##   rowname   disp    drat
##   <chr>    <dbl>   <dbl>
## 1 mpg     -0.848  0.681
## 2 hp       0.786 -0.443
## 3 wt       0.888 -0.712
## 4 qsec    -0.434  0.0912


  • 选择高于0.8的相关性:





## # A tibble: 2 x 3
##   rowname   disp     wt
##   <chr>    <dbl>  <dbl>
## 1 disp    NA      0.888
## 2 wt       0.888 NA


  • 关注一个变量与所有其他变量的相关性:
# Extract the correlation
## # A tibble: 5 x 2
##   rowname    mpg
##   <chr>    <dbl>
## 1 disp    -0.848
## 2 hp      -0.775
## 3 drat     0.681
## 4 wt      -0.868
## 5 qsec     0.419
# Plot the correlation between mpg and all others



重新排序相关矩阵












## # A tibble: 6 x 7
##   rowname      wt     drat    disp     mpg      hp     qsec
##   <chr>     <dbl>    <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
## 1 wt       NA      -0.712    0.888  -0.868   0.651  -0.175
## 2 drat     -0.712  NA       -0.710   0.681  -0.443   0.0912
## 3 disp      0.888  -0.710   NA      -0.848   0.786  -0.434
## 4 mpg      -0.868   0.681   -0.848  NA      -0.775   0.419
## 5 hp        0.651  -0.443    0.786  -0.775  NA      -0.706
## 6 qsec     -0.175   0.0912  -0.434   0.419  -0.706  NA


上/下三角

上/下三角形到缺失值


res.cor %>% shave()## # A tibble: 6 x 7
##   rowname     mpg    disp      hp     drat      wt  qsec
##   <chr>     <dbl>   <dbl>   <dbl>    <dbl>   <dbl> <dbl>
## 1 mpg      NA      NA      NA      NA       NA        NA
## 2 disp     -0.848  NA      NA      NA       NA        NA
## 3 hp       -0.775   0.786  NA      NA       NA        NA
## 4 drat      0.681  -0.710  -0.443  NA       NA        NA
## 5 wt       -0.868   0.888   0.651  -0.712   NA        NA
## 6 qsec      0.419  -0.434  -0.706   0.0912  -0.175    NA

将数据拉伸为长格式

res.cor %>% stretch()## # A tibble: 36 x 3
##   x     y           r
##   <chr> <chr>   <dbl>
## 1 mpg   mpg    NA
## 2 mpg   disp   -0.848
## 3 mpg   hp     -0.775
## 4 mpg   drat    0.681
## 5 mpg   wt     -0.868
## 6 mpg   qsec    0.419
## # … with 30 more rows
  • 处理相关性

可视化相关系数的分布:


重新排列并过滤相关矩阵:


res.cor %>%
  focus(mpg:drat, mirror = TRUE) %>% 

## # A tibble: 3 x 4
##   rowname     mpg    disp   drat
##   <chr>     <dbl>   <dbl>  <dbl>
## 1 hp       -0.775   0.786 -0.443
## 2 mpg      NA      -0.848  0.681
## 3 disp     NA      NA     -0.710



##   rowname  mpg disp   hp drat   wt qsec
## 1     mpg      -.85 -.77  .68 -.87  .42
## 2    disp -.85       .79 -.71  .89 -.43
## 3      hp -.77  .79      -.44  .65 -.71
## 4    drat  .68 -.71 -.44      -.71  .09
## 5      wt -.87  .89  .65 -.71      -.17
## 6    qsec  .42 -.43 -.71  .09 -.17
res.cor %>%
  focus(mpg:drat, mirror = TRUE)

##   rowname  mpg disp drat
## 1      hp -.77  .79 -.44
## 2     mpg      -.85  .68
## 3    disp           -.71


  • 制作相关图:


  • 重新排列然后绘制下三角形:


  • 制作网络

关联数据库中的数据

  • 使用SQLite数据库:

con <- DBI::dbConnect(RSQLite::SQLite(), path = ":dbname:")
db_mtcars <- copy_to(con, mtcars)
class(db_mtcars)


correlate()检测数据库后端,用于tidyeval计算数据库中的相关性,并返回相关数据。


db_mtcars %>% correlate(use = "complete.obs")
  • 使用spark:

sc <- sparklyr::spark_connect(master = "local")
mtcars_tbl <- copy_to(sc, mtcars)
correlate(mtcars_tbl, use = "complete.obs")


相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
4月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
61 3
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
92 3