EBGCN:面向传播不确定性的谣言检测边增强贝叶斯图卷积网络

简介: EBGCN:面向传播不确定性的谣言检测边增强贝叶斯图卷积网络

论文标题:Towards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional Networks for Rumor Detection


论文链接:https://arxiv.org/abs/2107.11934


论文来源:ACL 2021


一、概述


现有的一些方法将谣言的传播结构构建成图,然后基于回复或转发关系来聚合邻域特征。然而,在信息传播的过程中,这些关系都被视为可信赖的边。如下图所示,一些不准确的关系(举例来说,有些回复可能与事实无关,比如一些小广告什么的)为谣言的传播结构带来了不确定性(uncertainty):QQ截图20220612095225.png

                                         example

对不可信赖关系的忽略将导致多层信息传播过程中的误差累积从而限制有效特征的学习。我们从两个方面论证了传播结构中这种固有的不确定性是不可避免的:

①在现实世界中,谣言的制造者总是狡猾的,他们倾向于恶意操纵他人,创建虚假的支持推文,或删除反对的声音,以逃避检测;

②对传播关系的一些标注是主观的和破碎的,可用的图将是真实传播结构的一部分,同时也包含噪声关系,从而产生不确定性。


为此本文提出了EBGCN(Edge-enhanced Bayesian Graph Convolutional Network)来处理传播结构中的不确定性。EBGCN的核心思想是根据观测图的先验信念(prior belief)自适应地控制消息传递,以替换传播图中的固定边权值。在每次迭代中,根据观察图中节点特征的先验信念,由隐关系(latent relation)的后验分布推断边的权值。然后,利用图卷积层,通过聚合重构边上的邻域信息来聚合节点特征。通过上述方式,EBGCN可以处理传播结构中的不确定性并且提高谣言检测的鲁棒性。


另外,由于训练时缺少一些关系,或者一些关系是不准确的,我们设计了一种边一致性训练框架(edge-wise consistency training framework)。该框架将对这些未标注关系的无监督一致性训练结合到对标注样本的有监督训练中,以促进更好的学习。我们进一步通过计算两种分布之间的KL散度来保证边的隐分布和节点特征在观测图中的分布的一致性。


二、问题陈述


  1. 问题陈述


QQ截图20220611213838.png


三、方法

  1. 概述

下图展示了EBGCN的大体架构:


QQ截图20220612095312.png                                         框架


模型的输入为claim的文本内容和传播结构,我们首先将传播结构构建成两个相反边方向的图,分别是top-down的传播图和bottom-up的扩散图。文本内容通过文本embedding层编码成embedding向量。然后我们通过两个主要模块——节点更新模块和边推理模块来迭代地捕获丰富的结构信息,接着聚合节点特征生成图embedding,最终输出claim的预测标签。


训练时通过未标注隐关系的反向传播损失来结合贝叶斯的无监督一致性训练,也就是通过最小化无监督和有监督损失的加权累加来优化模型。


  1. EBGCN


  • 图形构造与文本embedding


QQ截图20220611214138.png


  • 节点更新(Node Update)


QQ截图20220611214434.png


  • 边推理(Edge Inference)

QQ截图20220611214541.png

  • 分类

QQ截图20220611214734.pngQQ截图20220611215749.png

QQ截图20220611220329.png

QQ截图20220611220403.png是一个权衡因子。

四、实验


  1. 数据集

数据集采用Twitter15,Twitter16和PHEME数据集,统计情况如下:

QQ截图20220612095352.png

                                                     数据集

  1. 实验结果


对比了多个baseline方法:


QQ截图20220612095438.png

                                             实验结果

  1. 消融实验

探究了隐关系数量QQ截图20220611220547.png和损失权衡因子QQ截图20220611220403.png的影响:

QQ截图20220612095505.png

                                             消融实验

  1. 早期谣言检测


探究了早期谣言检测的性能:

QQ截图20220612095614.png

                                                   早期谣言检测


  1. 例子


下图展示了一个假谣言的例子,通过边推理过程,一些无关的边的权重被缩小了:

QQ截图20220612095641.png

                                                        example



相关文章
|
6天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
8天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
12天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
27 7
|
9天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
12 2
|
9天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
16 1
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
9天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
9天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
11天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。
|
6天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关

热门文章

最新文章