AI实现语音文字处理,PaddleSpeech项目安装使用 | 机器学习

简介: AI实现语音文字处理,PaddleSpeech项目安装使用 | 机器学习

前言

这段时间一直在研究飞浆平台,最近试了试PaddleSpeech项目,试着对文本语音做处理。整体的效果个人觉着不算特别优越,只能作为简单的学习使用。

项目github地址:github仓库

环境安装

首先我们看一下项目结构以及安装文档。

image.png需要Python3.7以上、C++环境、requirements安装等等,下面按照我的顺序说一下。


1、conda安装Python3.9虚拟环境

使用conda安装python3.9环境,命令如下。


conda create -n py39 python=3.9


2、安装Visual Studio 2019

安装地址: Microsoft C++ 生成工具 - Visual Studio


注意安装的时候需要勾选C++桌面开发。


3、安装requirements.txt

使用命令安装requiremets.txt,命令如下:


pip install -r requirements.txt -i https://pypi.douban.com/simple


这里要注意一下,paddlespeech_ctcdecoders安装失败的话无所谓,可以略掉。


4、安装paddlepaddle和paddlespeech

命令如下:


pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

pip install paddlespeech -i https://pypi.tuna.tsinghua.edu.cn/simple

5、nltk_data下载

按照项目安装文档内的说明。


image.png


我的本地目录地址如下


image.png


项目验证

我下面分别验证一下tts、asr以及标点恢复功能。


tts语音合成

使用命令如下:


paddlespeech tts --input "南京现在很冷,下次再去夫子庙吧。" --output C:\Users\xxx\Desktop\115.wav


执行过程


(dh_partner) D:\spyder\PaddleSpeech>paddlespeech tts --input "南京现在很冷,下次再去夫子庙吧。" --output C:\Users\xxx\Desktop\115.wav

phones_dict: None

[2022-01-05 17:23:43,642] [    INFO] [log.py] [L57] - File C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4.zip md5 checking...

[2022-01-05 17:23:44,742] [    INFO] [log.py] [L57] - Use pretrained model stored in: C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4

self.phones_dict: C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4\phone_id_map.txt

[2022-01-05 17:23:44,743] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4

[2022-01-05 17:23:44,744] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4\default.yaml

[2022-01-05 17:23:44,744] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4\snapshot_iter_76000.pdz

self.phones_dict: C:\Users\huyi\.paddlespeech\models\fastspeech2_csmsc-zh\fastspeech2_nosil_baker_ckpt_0.4\phone_id_map.txt

[2022-01-05 17:23:44,745] [    INFO] [log.py] [L57] - File C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4.zip md5 checking...

[2022-01-05 17:23:44,782] [    INFO] [log.py] [L57] - Use pretrained model stored in: C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4

[2022-01-05 17:23:44,783] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4

[2022-01-05 17:23:44,783] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4\pwg_default.yaml

[2022-01-05 17:23:44,785] [    INFO] [log.py] [L57] - C:\Users\huyi\.paddlespeech\models\pwgan_csmsc-zh\pwg_baker_ckpt_0.4\pwg_snapshot_iter_400000.pdz

vocab_size: 268

frontend done!

encoder_type is transformer

decoder_type is transformer

C:\Users\huyi\.conda\envs\dh_partner\lib\site-packages\paddle\framework\io.py:415: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' i

s deprecated since Python 3.3, and in 3.10 it will stop working

 if isinstance(obj, collections.Iterable) and not isinstance(obj, (

acoustic model done!

voc done!

Building prefix dict from the default dictionary ...

[2022-01-05 17:23:51] [DEBUG] [__init__.py:113] Building prefix dict from the default dictionary ...

Loading model from cache C:\Users\huyi\AppData\Local\Temp\jieba.cache

[2022-01-05 17:23:51] [DEBUG] [__init__.py:132] Loading model from cache C:\Users\huyi\AppData\Local\Temp\jieba.cache

Loading model cost 0.659 seconds.

[2022-01-05 17:23:52] [DEBUG] [__init__.py:164] Loading model cost 0.659 seconds.

Prefix dict has been built successfully.

[2022-01-05 17:23:52] [DEBUG] [__init__.py:166] Prefix dict has been built successfully.

C:\Users\huyi\.conda\envs\dh_partner\lib\site-packages\paddle\fluid\dygraph\math_op_patch.py:251: UserWarning: The dtype of left and right variables are not the same, left dtype is padd

le.int64, but right dtype is paddle.int32, the right dtype will convert to paddle.int64

 warnings.warn(

[2022-01-05 17:23:58,811] [    INFO] [log.py] [L57] - Wave file has been generated: C:\Users\xxx\Desktop\115.wav


生成的音频如下


image.png


asr语音识别

我就使用了tts生成的音频进行asr识别,看看效果,命令如下:


paddlespeech asr --lang zh --input C:\Users\xxx\Desktop\115.wav


执行结果如下


image.png


可以看到最后打印的内容是没有标点的文字输出,还是比较准的。


标点恢复

就用这句话试试标点恢复的情况,命令如下:


paddlespeech text --task punc --input 南京现在很冷下次再去夫子庙吧


执行结果


image.png


看起来语义上没什么问题。


总结

我在前言中说效果不是很好的主要原因是因为速率比较慢,相比于类似阿里云提供的tts、asr接口来说,效率比较低。也可能和需要校验模型是否存在这些无关紧要的功能有关。可以考虑研究代码,自己重新封装一些服务,效果应该好的多。


还有补充一下,最近博主在参加评选博客之星活动。如果你喜欢我的文章的话,不妨给我点个五星,投投票吧,谢谢大家的支持!!链接地址:https://bbs.csdn.net/topics/603956455


分享:


       世界不会在意你的自尊,人们看到的只是你的成就。在你没有成就以前,切勿过分强调自尊。——《了不起的盖茨比》


如果本文对你有用的话,点个赞吧,谢谢!!!


相关文章
|
15天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
51 3
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
25 2
|
11天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
13天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
32 2
|
20天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
58 6
|
19天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
57 1
|
22天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
1月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
44 3