高斯网络|机器学习推导系列(二十二)

简介: 高斯网络|机器学习推导系列(二十二)

一、概述


高斯网络是一种概率图模型,对于普通的概率图模型,其随机变量的概率分布是离散的,而高斯网络的概率分布是连续的高斯分布。高斯网络也分为有向图和无向图,其中有向图叫做高斯贝叶斯网络(Gaussian Bayesian Network,GBN),无向图叫做高斯马尔可夫网络(Gaussian Markov Network,GMN)。概率图模型的分类大致如下:


%2FJFSVU446ZO9R(Y[S]}%I.png

H_X~(V6~_~BW[3Y8$D)Z2LJ.png


二、高斯贝叶斯网络


  1. 有向概率图模型的因子分解


GBN作为一种有向概率图模型,同样服从有向图的因子分解:


M$W[(5S[~GX~8]@JQPV2P6A.png


  1. 线性高斯模型


GBN从局部来看是一个线性高斯模型,举例来说,就是下面两个两个随机变量之间满足线性关系,同时包含一定的噪声,噪声服从高斯分布:


T@I4_ZQEKXBA`S1`)1XUT_F.png

           线性高斯模型


其概率表示如下:


H2S{2%NVI9U`CPJ~C%_34YU.png

  1. 类比线性动态系统


对于GBN是线性高斯模型这一点可以类比之前讲过的线性动态系统(Linear Dynamic System,LDS),参考链接:卡尔曼滤波|机器学习推导系列(十八)


LDS是一种特殊的GBN,它的概率图模型如下:

]QG~7]H51_QPV5ZLG1ENTKO.png


                                                  LDS


在LDS中每个节点都只有一个父亲节点,其概率为:


MH@LN[`1)CV1]T(}0G$6CJ3.png


写成条件概率的形式就是:


W}3S{8VL0P53()}RWYT7}$C.png


LDS 的假设是相邻时刻的变量之间的依赖关系,因此是一个局域模型,而GBN每⼀个节点的父亲节点不⼀定只有⼀个,因此可以看成是⼀个全局的模型。


  1. 高斯贝叶斯网络的表示


在GBN中,对于每一个节点,其概率可以写成以下标准形式:

LRGC9~@F228QHO[3{C9Y3A7.png

然后将前面的式子写成向量形式:


BTT}DCQF0_TJC6K{KR]FK)D.png


整理一下,也就有:


Y0`GHEV)G5DA~Q8J2ALFVQM.png


因此协方差矩阵就可以写成:


%7A4`5`72I9C5B20)R255SP.png


三、高斯马尔可夫网络


  1. 高斯贝叶斯网络的表示


对于无向图的高斯网络,其概率可以表示为:


PC06DZYT8OP71U`}[Q67ZOF.png


而对于多维高斯分布的概率表达形式:


H$8KR0AGY(Z0U97L0M%B_00.png


我们可以根据上式进行整理来探索上述两个不同的概率公式之间的联系:


ZTD61TOX19ZGB8M24J@[J2E.png

JU6U6IRM1E6RMG4B0T3`73V.png

讨论上面的内容是为了说明以下结论:一个多维高斯分布对应着一个GMN,我们在学习这个多维高斯分布时,除了学习到这个分布的参数,同时也学习到了这个GMN的结构,这是因为如果我们学习到{94]0Y`673{Y40MKS}AXLP1.png的话,这表示在概率图上对应的两个节点之间是没有边的。


  1. 其他性质


对于无向图高斯网络来说,除了满足全局独立性和条件独立性以外,还满足另外一个性质,也就是:

T53U$P%98E`NIO9R%0XWISP.png

上述性质的得出是根据JOTOL{YV$I7_CV64A(%1XLX.png来求解条件概率分布,而求解高斯分布的条件概率分布的方法在之前的课程中已经介绍过了,参考链接:高斯分布|机器学习推导系列(二)

相关文章
|
25天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
50 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
95 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 安全 网络安全
利用机器学习优化网络安全威胁检测
【9月更文挑战第20天】在数字时代,网络安全成为企业和个人面临的重大挑战。传统的安全措施往往无法有效应对日益复杂的网络攻击手段。本文将探讨如何通过机器学习技术来提升威胁检测的效率和准确性,旨在为读者提供一种创新的视角,以理解和实施机器学习在网络安全中的应用,从而更好地保护数据和系统免受侵害。
|
26天前
|
机器学习/深度学习 人工智能 算法
#如何看待诺贝尔物理学奖颁给了机器学习与神经网络?#
2024年诺贝尔物理学奖首次颁发给机器学习与神经网络领域的研究者,标志着这一技术对物理学及多领域应用的深远影响。机器学习和神经网络不仅在生产、金融、医疗等行业展现出高效实用性,还在物理学研究中发挥了重要作用,如数据分析、模型优化和物理量预测等,促进了物理学与人工智能的深度融合与发展。
22 0
|
1月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
1月前
|
机器学习/深度学习 人工智能 算法
【人工智能】人工智能的历史发展与机器学习和神经网络
【人工智能】人工智能的历史发展与机器学习和神经网络
47 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
53 1
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
42 0
|
6天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关
|
1天前
|
监控 安全 网络安全
企业网络安全:构建高效的信息安全管理体系
企业网络安全:构建高效的信息安全管理体系
13 5

热门文章

最新文章