基于YOLOV5行人跌倒检测实验

简介: 随着科技的快速发展,智慧交通系统的建设对提升人们的生活品质,提升城市交通服务能力和城市交通管控的科学有效性有着重点意义。

1.  实验环境


     实验环境是基于硬件信息为Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz(3401 MHz),内存为 8 个 G,系统为 Microsoft Windows 10  专业教育版(64 位),显卡为 NVIDIA GeForce RTX 2060 SUPER  (8192MB),使用 pytorch+cuda+cudnn 进行模型的训练和预测。


2. 行人目标检测


      跌倒检测的第一步,目标检测作用是从复杂场景中检测出人,检测精度也对后续的跌倒判别有着很大的影响。  本文使用的 YOLOv5 模型的网络结构是 YOLOv5s,虽然精度不是很高,但是训练速度很快。YOLOv5 初始训练的数据集为 COCO 数据集,COCO 数据集是一个大型的物体检测、分割和字幕数据集,也是目前最广泛公开的目标检测数据库。数据集总共有超过 33  万张图片,其中 20 万张有标注,个体的数目超过 150 万个。该数据集主要从复杂的日常场景中截取,提供的类别有 80  类,其中 person 是 COCO 数据集中的一个类。使用 YOLOv5 在 COCO 数据集上训练得到的初始训练权重,在COCO128 数据集上进行了实验,最终模型的性能在 COCO128 数据集上达到了0.76 mAP@0.5 IOU。而对自建数据集进行测试的时候,YOLOv5 的检测性能为 0.48mAP@0.50 IOU,精度下降了很多,主要原因本文也提过,  COCO数据集中包含人体的图片较少,尤其是躺着的人或者有遮挡的人样本较少,在使用 YOLOv5 模型对 COCO 数据集进行训练的时候,模型能较好的识别图像中的站立的人体,但是在检测躺着的人的时候,容易出现检测丢失,在之后的目标跟踪中也会因为人体目标丢失导致精度下降。这是比较致命的问题,因此不能直接 YOLOv5 在 COCO 数据集上的预训练权重,而是需要收集包含更多人体姿态的数据集,并调整相应的训练参数,从而获得更好的检测效果。      

     使用了自建数据集,从网上搜集了共 800 张复杂场景下的人体姿态,并使用标注工具 LabelImg 对其中的人体进行人工标注,然后按照 COCO 数据集的格式将图片和标准依次放到代码里,并利用 COCO 已经训练好的权重进行初始化,依然是使用 YOLOv5s 的网络结构进行训练,最终模型的性能上升到了 0.67 mAP@0.50 IOU,对于之前难以检测到的躺在地上的人体,也能进行很好的识别。

RA2M9ZCB6@$IOS(2SS9$FN0.png

相关文章
|
6月前
|
机器学习/深度学习 编解码 监控
手把手改进yolo训练自己的数据(坑洼路面识别)
手把手改进yolo训练自己的数据(坑洼路面识别)
|
6月前
|
机器学习/深度学习 编解码 监控
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-1
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-1
|
C++ 计算机视觉 Python
Python Yolov5路面裂缝识别检测识别
Python Yolov5路面裂缝识别检测识别
199 0
|
6月前
|
机器学习/深度学习 存储 安全
YOLOv8火灾和烟雾检测
YOLOv8火灾和烟雾检测
|
6月前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真
摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。
|
6月前
|
机器学习/深度学习 算法 安全
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
|
6月前
|
机器学习/深度学习 监控 并行计算
yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)
yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)
|
机器学习/深度学习 传感器 算法
谈yolov5车辆识别
谈yolov5车辆识别
283 0
|
机器学习/深度学习 人工智能 算法
基于深度学习的农作物叶片病害检测系统(UI界面+YOLOv5+训练数据集)
基于深度学习的农作物叶片病害检测系统(UI界面+YOLOv5+训练数据集)
742 1